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A Monte Carlo method is used to calculate various properties of one-band Gutzwiller wave func-
tions which are formed by restricting the charge fluctuations in noninteracting wave functions.
Gutzwiller’s approximate formula for the kinetic energy is tested both for the ground state and excit-
ed states. The ground state is found to have strong antiferromagnetic short-range spin-spin correla-
tions for nearly-half-filled bands, thus extending previous work on the half-filled case. These correla-
tions are very sensitive to the choice of occupied Bloch states and when the occupation is distributed
uniformly over the band they disappear. From this fact we conclude that correlations are present
only at temperatures low compared to the coherence temperature. In the almost-localized limit it is
advantageous to describe the system by an effective Hamiltonian which separates into a term due to
the kinetic energy of the charge carriers and one due to the Heisenberg spin-spin coupling. We show
that the almost-localized Fermi liquid can gain energy from both terms in the effective Hamiltonian.
In other words the restrictions on charge fluctuations can cause spin correlations which in turn can

stabilize the Fermi-liquid ground state.

I. INTRODUCTION

The study of heavy Fermi liquids has been a very active
problem in recent years.! In these systems there is a
strong on-site repulsion which restricts the number of fer-
mions on a given site; nonetheless, these systems are not
localized but Fermi liquids. The strong on-site correla-
tions that result in the Fermi liquid cannot be treated in
perturbation theory. Gutzwiller’ proposed to study such
systems by means of a wave function in which a projec-
tion operator P that restricts the numbers of fermions on
any given site operates on a free-fermion wave function.
The key question is how to treat the projection operator
when calculating, for example, the kinetic energy. In his
original work Gutzwiller? proposed an approximate for-
mula (GAF) and since then his original derivation of this
formula has been extended and simplified. ')

Another approach to this problem has been to intro-
duce an auxiliary boson field to enforce the correlations.
This so-called ‘“‘slave”-boson technique was originally in-
troduced for the single-site Kondo problem®~> and has
now been widely used for the periodic Anderson-lattice
Hamiltonian as well.®~® The relation between these two
techniques has been clarified by Kotliar and Ruckenstein.’
They showed that the GAF corresponds to a particular
slave-boson mean-field theory in which several auxiliary
boson fields are introduced to enforce the correlation-
induced constraints. In the limit that the degeneracy (or-
bital plus spin) N, of the local state on each site ap-
proaches «, there is no difference between the results us-
ing GAF (Ref. 10) and the slave boson and other
approaches.”‘”'”a’ The GAF, however, is also correct
in the limit Ny—1 and in the weak-coupling limit when
the on-site Coulomb interaction U—0. Thus it can be re-
garded as an interpolation scheme and, as Kotliar and
Ruckenstein® showed, if one wishes to have a mean-field
theory which correctly gives these limits one is led to this
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form. Of course, a correct interpolation does not mean
that the values are correct for finite values of Ny and U.
One can also do a systematic expansion about the
Nf,U— o limit. An expansion in N, f_', to obtain the
leading correction, has recently been carried through for
the periodic Anderson model by Millis and Lee'* and by
Auerbach and Levin.'*

It is possible to directly numerically evaluate the re-
quired expectation values of the projected wave function.
These values can then be compared with the GAF. Such
numerical calculations have been done for the half-filled
case for finite chains up to 18 sites by Kaplan, Horsch,
and Fulde."” Horsch and Kaplan'® were the first to real-
ize that such numerical evaluations can be done for finite
systems in one and two dimensions using a Monte Carlo
(MC) technique. They studied the spin-spin correlation
function of a Gutzwiller wave function for a single-band
half-filled Hubbard model in the large-U limit. In their
original work they reported results for one-dimensional
(1D) systems, but they have also studied 2D systems.'®®
The aim of this paper is to extend their studies to expecta-
tion values of other operators and to make a direct test of
the GAF for the kinetic-energy operator and other opera-
tors. Recently, Shiba!’ has reported a series of Monte
Carlo calculations on Gutzwiller-type wave functions for
the periodic Anderson model in one dimension. He finds
good agreement, in general, with the results obtained by
Rice and Ueda'® based on the GAF, at least if the f level
is not too far into the Kondo regime. In that limit his nu-
merical accuracy is more limited and direct comparisons
are more difficult.

One remarkable result due to Kaplan, Horsch, and
Fulde'® is that the single-band (nondegenerate) Gutzwiller
wave function in the U— o, half-filled limit exhibits a re-
markable degree of short-range magnetic order. In fact,
their results show in one dimension a value for the expec-
tation value g, = (s?s?, ;) indistinguishable from the exact
result for the s =1 antiferromagnetic Heisenberg chain.
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In two-dimensions the results of Horsch and Kaplan'® on
a square lattice also show strong short-range order, al-
though in this case |q, | is significantly different than ex-
pected in the Heisenberg problem. Our results confirm
their general conclusion. Due to a modification of their
technique, we are able to study certain 1D states with a
greatly improved size and number of Monte Carlo steps,
with the result that we can see a very small but numeri-
cally significant difference between the 1D values of g, for
the Gutzwiller wave functions and the exact Heisenberg
values. We have extended the results to the case in which
the number of particles per site, ny <1, and have found,
as expected, only a very small change in ¢g,. Our results
for the kinetic energy as a function of 1—ny, give a value
very close to the maximum obtainable value and one
slightly higher than those given by the GAF for N,=2.
In general, we find that the GAF overestimates the gain
in kinetic energy, but there are reasons to suspect that this
is a consequence of the special band structure in one di-
mension and that the accuracy of the GAF improves in
higher dimensions.

In discussing the effects of keeping U finite, Kaplan,
Horsch, and Fulde!’ showed, for the Hubbard Hamiltoni-
an, that it was favorable using the Gutzwiller wave
function—to introduce a small density of doubly occu-
pied sites d as soon as U is finite. This contradicts the
conclusions of Brinkman and Rice'® that d =0 for U > U,
(U. is the Mott-Hubbard critical value of U). There is,
however, an alternative approach to finite U; namely, that
one evaluates the energy with an effective Hamiltonian.
Castellani et al. and Hirsch!® have derived an effective
Hamiltonian which clearly distinguishes the effect of a
real promotion of electrons from the lower to upper Hub-
bard bands to give d >0 and a finite density of carriers,
from the virtual hopping processes (which also make d >0
and cause an antiferromagnetic Heisenberg coupling).
The former does not occur for large U and the latter, of
course, do not give rise to free carriers. The Gutzwiller
wave function gives an excellent energy for the Fermi-
liquid state with 1—n,>0, U finite and large, if we use
the effective Hamiltonian, since it has a very good kinetic
energy for the holes and a very good value of ¢g;. It has
the implication that the energy balance between localized
and itinerant states is a subtle one, since there are strong
short-range spin correlations in the Fermi liquids. Note
that such short-range correlations were also found in the
Anderson model by Shiba.!” The unitary transformation
from the Hubbard to the effective Hamiltonian amounts
to a change of basis in the wave function, so that the use
of an effective Hamiltonian with a Gutzwiller wave func-
tion is equivalent to using the original Hubbard Hamil-
tonian with a Gutzwiller wave function constructed from
a transformed basis.

The spin-spin correlations have an important effect on
the magnetic susceptibility. By explicit calculation we
find that the antiferromagnetic correlations are reduced in
an applied field and the Heisenberg coupling term in the
effective Hamiltonian then generates a finite restoring
force (i.e., a finite Curie-Weiss ®). The kinetic-energy
term is hardly changed, so that it is the Heisenberg-
coupling term which determines the susceptibility. We

have also examined these two questions; namely, the form
of the spin-spin correlations and the accuracy of the GAF
when an excited-state wave function is taken instead of
the ground state. We find that the accuracy of the GAF
is much reduced but the value of the kinetic energy
remains higher in all the excited states that we examined.
The strong antiferromagnetic spin-spin correlations that
characterize the ground state are very sensitive to the
choice of Bloch states that are occupied, and when the oc-
cupation probability is distributed over the band they
disappear. From this we conclude that these antiferro-
magnetic spin correlations will be present only at temper-
atures that are low compared to the coherence
temperature—an effect found in experiments on the
heavy-electron metals.

This paper is organized as follows. In Sec. II we dis-
cuss the Monte Carlo method and introduce the
modification which in one dimension greatly speeds up
the Monte Carlo procedure. Then, in Sec. III the effective
Hamiltonian in the large-U limit, but with a general value
of Ny, is discussed. Note that we discuss the difference
between the effective Hamiltonian appropriate to the Hub-
bard and Anderson models. The properties of the ground
state, its energy, spin-spin correlations, and magnetic sus-
ceptibility are discussed in Sec. IV. Then, in Sec. V we
examine a variety of excited states corresponding to
changing the occupation probabilities in the Bloch-state
part of the Gutzwiller wave function. Finally, we sum-
marize our conclusions in Sec. VI.

II. METHODS

Throughout this paper we use the infinite-U Gutzwiller
wave function

I\I/(;>:H(1—n”n,‘1) H

i k (<kp),o

o |0)=Sa,la), (1)

with n”=c,-4'r,c,-1. Our problem is to evaluate expectation
values of the form

(V5|60 |¥6)=Z aeatOp - )
a,B

Here, a,f3 are states in which the electron spins have a
definite spatial configuration. In other words, a is a label
specifying the two disjoint sets {r},{r’}, which determine
the positions of the up- and down-spin electrons, respec-
tively. The corresponding coefficient a, is proportional to
the product of two Slater determinants with elements
explik;rp, ) and explik;r,,), where / and m run from 1 to
N,. N, is the total number of up (o =1) or down (o =1)
electrons. We take a normalization 3, |a, |?=1. The
choice of k values determines W, which is defined on a
line of L sites with periodic boundary conditions. Horsch
and Kaplan!®® were the first to recognize that this sort of
expectation value is susceptible to a Monte Carlo (MC)
evaluation. They applied this technique to the half-filled-
band case for one, and in later work by Horsch and
Kaplan,m“” two dimensions. Recently, Shiba has imple-
mented these methods for the infinite-U Gutzwiller wave
function for the periodic Anderson model.!” Since these
authors have presented details of the method, we limit our
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discussion to a few points where our techniques differ
from theirs.

Let us first consider the simplest case, where 0 is diago-
nal, 6p,=0 if as=B. The most difficult part of the compu-
tation is T(a—a’'), the MC weighting factor in going
from one configuration, a, to another, a’. This is given
by the detailed-balance conditions

T(a—a')=1, |ay| 2 |aq |2 ,

and
T(a—a')= |ay |?/|aq|? when |a,|*> |aqx|?.

0., is then averaged over a sequence of states determined
by the T"s. o' is generated from a by the interchange of
electrons with different spins, or the motion of an electron
to an empty site. We follow Horsch and Kaplan'®® and
interchange only nearest-neighbor spins. In this case the
MC weighting factors are multiplied by a configurational
weighting factor which is straightforward to calculate.
The rate-determining factor is the evaluation of the ratio
of determinants a,/a,. If this is done by the inverse-
update method of Ceperley et al.,?® then a number of
multiplications of order N2 per spin degree of freedom is
required. In one dimension, at least for certain states, this
can be improved upon considerably. A determinant of a
matrix with elements exp(ik,;r,, ), where the k; form an ar-

ithmetic progression, i.e., k;=ko+I[Ak,1=0,...,
N,—1, is a Vandermonde determinant, it has the form
N_—1
1 z; z? z1¢
1 z, z3
1 z3 PR R
N, —1
1 PR ZN:

where z; =exp(iAkr;). This, in turn (by inspection of its
zeros), is simply equal to

H (z)—z,) .

ILm
(I<m)

A ratio of two such determinants is then

11l za—zm)/(zh—2m),
(m':tn)

when the position of only the n'th electron has been
changed from r, to r,. |ay/ay | 2 is then the product of
the square moduli of N such expressions. Note also that

r—rm

k
A 2

| zj —2zp | 2=4sin? , (3)

so that no complex arithmetic is required. Therefore we
have only of order N, operations. This allows us to treat
much larger systems. The method is suitable for the
ground state, since then ko= —kr and Ak =27w/L. A
certain class of excited states can also be investigated in
this way.

It is interesting to note that the evaluation of expecta-

tion values in the Gutzwiller ground state can be mapped
onto a statistical-mechanical problem. The statistical-
mechanics model has positions evenly distributed on a
ring. Unlike charges interact via a zero-range infinite
repulsive interaction. There is a logarithmic interaction
V(r,-,r,-)=—2q21n{z,-—zj‘ between like charges. The
square of the charge divided by the temperature is then
set equal to 1. This model is a generalization of a model
which was exactly solved by Dyson.?! However, his
methods do not seem to generalize to the case at hand.
We are also interested in off-diagonal operators, e.g.,
the kinetic energy. To obtain these, we can rewrite (2) as

(V6 |0|¥6)=3 |aa|? (3 Opalaf/al)]. @
a B

We can then proceed as before, using precisely the same
transition probabilities to generate the states, and measur-
ing the quantity appearing in the large parentheses. Two
things make the extension feasible. First, the measured
quantity involves again a ratio of determinants of exactly
the same kind as are needed for the transition probabili-
ties. Thus they can be evaluated by the techniques of
Vandermonde or Ceperley et al. Second, for the cases
which interest us, the sum over 3 for fixed a has only a
relatively small number of terms. For example, the kinet-
ic energy has no more than N,z terms, where N, is the
number of holes (which is small when 1—ns<<1 and
ny=N /L is the number of electrons per site) and z is the
number of neighbors. Somewhat more time consuming is
the off-diagonal part of 3; s;-s; 1, which we compute for
states of nonzero total magnetization. The number of
terms can then approach L but are still manageable.
Hence, for our purposes, off-diagonal operators present no
special problems.

It is generally permissible in the Monte Carlo technique
to decompose the summand as one wishes, one part going
into determining the transition probabilities, the second to
be averaged over. The most efficient method chooses the
first part to have most of the variance, and the second to
be as close to constant as possible. We are fortunate in
this case that the requirement of ease of calculation seems
to coincide with this prescription, since the kinetic energy
converges reasonably well.

III. EFFECTIVE HAMILTONIAN

Our objective in this paper is to assess the appropriate-
ness of the Gutzwiller wave function for a single-band
Hubbard model:

H=—t 3

c,t,cja+H.c.+U2n”nu , (5)
(i,j),o i

in which U/t is large (¢ >0) but not infinite, and (i,j)
are pairs of nearest-neighbor sites. In addition, our focus
is on the nearly-half-filled band case 1 —ny <<1. We then
have, to order ¢ /U, two contributions to the total energy.
The first is just the hopping term, the energy associated
with the motion of the relatively few holes. [We mean
this term to be synonymous with “empty site.”” Our
“holes” then propagate in the (lower) Hubbard band.
This is distinct from its usage, in semiconductor physics,
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to mean an empty orbital in a nearly full Bloch band.]
This energy vanishes when ny=1 and is proportional to
—(1—ny)t when 1—ny is small. The second contribution
is the energy of virtual hopping involving the creation and
destruction of a nearest-neighbor (NN) hole-doubly-
occupied-site pair. Real processes of this kind are negligi-
ble since they have an energy U. The virtual hopping
takes place on pairs of singly occupied sites. The total is
therefore proportional to nys. The two terms become com-
parable when U~t/(1—ny), ie., at larger U than one
might naively expect. Following Castellani ef al. and
Hirsch,!® we now transform the Hubbard Hamiltonian (5)
to an effective Hamiltonian which describes these process-
es more precisely. We rewrite (5) as

H=Ty+Ts+Tmx+V,
Th=—t 3 (1—n,_gleheo(l—nj ,)+H.c. ,

(i,j),o
N
Tyg=—t 3 n;_oCiocjionj_o+H.c.,
(ij),o
+ (6)
Thix=—t 2 n,‘,,(,C,'ang(l—njy,(,)—i-H.C.
{i,j),0
-t > (l—n,-,_(,)c,-‘:,cjgnj,,a—kH.c.,
(i,j),0

V:Uzn”n,-l >

with n,-,(,:c,-f,c,ﬂa. T} describes the transport of holes and
T, that of doubly occupied sites, i.e., Ty and T, do not
mix different Hubbard bands, only 7 x does so. We now
apply an unitary transformation to (6),

Heg=e TSHe "S=H +i[S,H]+ - -, (7

and choose S so that T, vanishes in lowest order. We
want to remove real mixing processes between different

Hubbard  bands. This  yields the condition
i[S, Th+Ty+V]=—Tnix or
(n | Tmix | m >
= _— , 8
S n%!n} e —en) (m | (8)

where |n),|m) are eigenstates of T, + T, +V with ei-
genvalues €, and €,. Except for one dimension, we do
not exactly know ¢, and g, but, for the large-U limit,
€, —€,=2U+0(). So we get

it

S=—73 3 N —oCloCio(1—nj _g)
(i,j),o
it
+IU 2 (l—n,-,_g)c,-t,cjanj,_a. (9)
(i,j),o

H.; taken between states with no doubly occupied sites
becomes

Heff:Th +i[S,Tmix]

=T, +21 2 (S,"Sj—%) (10)

Ginj)
for the case of spin L (N;=2) and 7=2t>/U. Note we
work only to lowest order and drop all terms
O(t3/U% (1—ns)t?/U, (1—ny)*t). Notice that the ex-
pectation  value (Wg|He|Ws) is equal to

(Vs |H |VYg) with
terms of order t2/U?2.

This means that we have a total number of doubly oc-
cupied sites,

|We)=(1—iS)| W), neglecting

= 1 ~ 11
D_<\If(; Lv wc>_—2 5 {6 | Vearr | W) , (1D

if we write Heg=T}4 + Veorr-

This approach is different from that introduced by Ka-
plan et al.'® to describe the case of U finite. They used a
Gutzwiller wave function with a finite density of doubly
occupied sites, but with an additional projection operator
which retained only those configurations in which all dou-
bly occupied and empty sites are on nearest-neighbor
pairs. In this way they obtained a very good energy. Our
approach gives an even better energy and has two addi-
tional advantages: (i) we keep the U=« Gutzwiller
wave function and put the changes into H 5, which is easy
to handle, and (i) H. clearly separates two different
physical processes, namely the propagation of holes (or
doubly occupied sites) from the virtual processes which
cause the Heisenberg spin-spin coupling. If we use the
GAF as, for example, Brinkman and Rice!® did, only the
first term is included, but it is only these real propagation
processes which can cause metallic conductivity. For an
exactly half-filled band at large U, the first term must be
zero and the system remains insulating. On the other
hand, our method, as an expansion in t/U, is suitable
only for the large-U limit, whereas Kaplan et al.,'’ with
their approach, can discuss both limits.

In the case of higher degeneracy (Ny>2), Vo is no
longer a Heisenberg antiferromagnetic spin-spin coupling,
but

Veorr=7 > P:P;(T5*/t)*P,P; , (12)
(i, j)
where the P; are projection operators which specify that
the only matrix elements are between singly occupied
sites. The interaction is again antiferromagnetic, but
more in the sense of a quantum Potts model, rather than
a Heisenberg model of higher spin.

A question that arises is the relation of this model to
the case of the heavy-electron metals. These materials are
described by a periodic Anderson model rather than a
Hubbard model. It is plausible to conjecture that one can
make a similar transformation of the Anderson Hamil-
tonian to a Her which again splits into kinetic-energy (or
propagation) terms and spin-spin—coupling terms.
Indeed, Hirsch!®® has proposed that the form of H . for
the Hubbard and Anderson models is the same. He as-
sumed that the f-level energy E lies well below the Fer-
mi energy, but the various approximate treatments!®~!*
and the Monte Carlo calculations of Shiba!’ show that E r
is renormalized to the Fermi energy and therefore the ex-
pansion proposed by Hirsch breaks down. Indeed, the
essence of the heavy electron problem (see, for example,
Rice and Ueda!®) is that the hybridization or kinetic-
energy terms are essentially nonanalytic in 1—ny, in con-
trast to the Hubbard model, where an analytic expansion
is expected. Nonetheless, it is plausible that a qualitative-
ly similar form of H.g can be found in which the hybridi-
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zation terms evaluated exactly by Shiba!” are supplement-
ed by spin-spin terms which can also be evaluated exactly
by Monte Carlo techniques.

IV. GROUND-STATE RESULTS

In this section we discuss the results of the Monte Car-
lo calculations for the ground state in one dimension, as a
function of the band filling, magnetization, and degenera-
cy, Ny, parameters. In Sec. IVA we concentrate on the
NN spin correlations, while in Sec. IV B we focus on the
kinetic energy, in Sec. IV C we discuss the spatial correla-
tions between holes (empty sites) in the Hubbard band.
In Sec. IVD we present results for the momentum distri-
bution function n (k) and in Sec. IVE we will consider
the implications of the results taken together.

A. Nearest-neighbor correlations

For spin 1 and a halffilled band, Horsch and
Kaplan'®®  calculated the NN spin correlation
q1={s?s?, ) for chains up to 98 sites. Their extrapolat-
ed result for L — o0 is g; = —0.147410.0007.

The exact (Bethe-ansatz solution) result for the antifer-

romagnetic Heisenberg chain (AFH) is??

gt =—1(In2—1)=—-0.1477157. .. . (13)

This value is about 0.2% above, but within, the error bars
of the result of Kaplan et al. This opens the question of
whether the Gutzwiller wave function for the Hubbard
model in one dimension and for the half-filled band is
identical to the exact antiferromagnetic ground state.

To answer this question we performed calculations,
with the Vandermonde method, for chains with up to
6000 sites, with 10*~10° MC steps per site. The extrapo-
lated result of a fit of the form q,(L)=gq (o )+Aq /L? is
(see Fig. 1)

q1(0)=—0.14739+0.00002 . (14)

The exact AFH value (13) differs by several standard de-
viations from our result (14), so that we conclude that the
half-filled-band Gutzwiller wave function is not identical
to the AFH ground state.

We have also investigated the change in the spin corre-
lation in the presence of a uniform magnetization
m =2(s7). In this case  (s?s? i )4(sfs" 1)
(=(sPs?;1)), so that one must calculate both expectation
values. As we discussed above, the calculation of
(s/s#.1) is more complicated as it involves off-diagonal
operators (e.g., s sit, ;). Nonetheless, we found that runs
of 2 10* MC steps per site for chains up to L =210 were
possible. We made a fit to a quadratic dependence for the
deviation in (s;'s; ), and then if we use the effective
Hamiltonian, H.g, it is straightforward to calculate the
change in energy. The uniform susceptibility X is then
easily obtained by expanding the energy per particle

e(m)=¢e(0)4+-gu’*m?/2Xx , (15)
and we find, for the half-filled band,

oltagof T 1 ' ' T N
\_‘/I/L2 fit
-<S|ZS|Z¢|> \

____T\—___________—_'"'?GJ AFH

0.1475 N

R e e

0.1470 | |

1 1 1 1

10 100 1000 10000 L

FIG. 1. Nearest-neighbor spin correlations. Shown are some
of the 18 data points that were used to obtain the fit
(s#si11)=q1(o)+Aq1 /L% L ranges from 18 to 6010. Total
number of Monte Carlo steps is 6 107 for all large samples.
Also shown is the value for the exact ground state of the antifer-
romagnetic Heisenberg chain (AFH).

2,.2
X Gutz=0.058 +0.008 S (16)
T

This value of X is also very close to the exact value of the
AFH chain:?

2.2 2.2
XAFH=—1~§;“—=o.ososg—f— . (17)

21?2

Note that Xy, is slightly higher than X spg. This means
that for higher values of the magnetization m, the
difference in energy between the Gutzwiller wave function
and the AFH chain becomes smaller. This is to be ex-
pected since in the limit m =1 they are identical.

Now we turn to higher values of the degeneracy Ny.
The effective Hamiltonian is given in (12). Figure 2 shows
the result for (V). For the Gutzwiller state { Vo)
approaches —27 per site asymptotically for large Ny.
This is remarkable, since —27 per site is an absolute
lower bound. To see this, we note that the eigenvalues of
Veorr for the two-site problem are O and —27 for all Ny.

It is amusing to make a comparison between the

<Vco" >

Monte Carlo

Neel state

ol 1 1 1
o 12 5 10 Ne

FIG. 2. Expectation value of the correlation energy { Veorr)
[defined in (12)], in units of —2¢2/U as a function of degeneracy
Ny, for the Gutzwiller wave function (Monte Carlo) and the
Neéel state. Note that the MC result approaches —4t2/U asymp-
totically for large Ny. L ranges from 60 to 240 (for large Ny)
and 2000 MC steps per site were used.
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Gutzwiller and Néel states, which is the ground state for
an antiferromagnetic Heisenberg s;s; interaction in the
classical limit S— oo. (S is similar to the degeneracy Ny.)
However, the ground state for the effective Hamiltonian
(12) does not approach the Néel state, which has
(Veore) = — for all Ny. Thus, for large N, the Gutzwill-
er wave function yields about twice the correlation energy
of the Neéel state. Note that the conclusion that the
Gutzwiller state is energetically favored over the Neéel
state is a consequence of the form of the coupling (12).
Finally, in Fig. 3 we plot the results of the nn spin corre-
lation as a function of N;.

These results change only slightly when we introduce a
small number of holes, 1—n;. The decrease in { Veorr)
and (s;-s; ;) is found to be only ~(1 —ny), as expected.

B. Kinetic energy for a less than half-filled band

In this subsection we will show that the Gutzwiller
wave function when we introduce a few holes (1 —n;>0)
yields a good kinetic energy with respect to the exact
values, and that the GAF is a good approximation for the
kinetic energy. This is important since the Gutzwiller
wave function is a coherent wave function with a Fermi
surface enclosing n, states per site. The exact ground
state of the infinite-U Hubbard model (see Klein and
Seitz?* ‘and Brinkman and Rice!® for a description), on the
other hand, is not coherent in the sense that it has a finite
mobility. Further, the one-particle Green’s function for a
single hole introduced into an infinite-U Hubbard chain
does not have a quasiparticle pole.'®

Figure 4 shows the kinetic energy per hole in the limit
of small hole density 1 —n,. The exact value of the Hub-
bard model in one dimension for a state with a given spin
configuration is —21.2*

The GAF for the ground-state kinetic energy per site is
(see Ref. 10) (in one dimension)

No1—n
EGutz= E —f<€g>—_—

oz 1—n,

(1—ns)Ny 2t .
l—n//Nf T

nf‘lT
Ny

(18)

Formula (18) yields a value below the exact value, —2t

10 T T T T T
-GS ." —— Monte Carlo
SiSi+1 PR Néel state
5
|
0

z

FIG. 3. Nearest-neighbor spin correlation {s?s7,1) as a func-
tion of degeneracy Ny. The results for the Gutzwiller wave func-
tion (Monte Carlo) and for the Néel state are shown. L varies

from 60 (for small Ny) to 280 (for large N;). 2000 MC steps per
site were used.

o 2 10 12 N¢
o T I T
—— Monte Carlo
------ exact
——— GAF
—-— SBF
- —
.\‘
\.
~.
\‘\
-2 - ———-
<T> //”’
-3 1 1 1

FIG. 4. Expectation value of the kinetic energy per hole as a
function of degeneracy N;. The results are shown for the
Gutzwiller wave function (Monte Carlo), the Gutzwiller approxi-
mate formula (GAF), the slave-boson formula (SBF), and for the
exact ground state. Note that the special value Ny =1 lies off the
smooth curve obtained for Ny >2 and that in this case the SBF
yields zero instead of the exact value —2¢, obtained in the GAF.
L =240 and 10* MC steps per lattice site were employed.

per hole, because in one dimension the density of states
has a quadratic divergence at the band edges and (eg)
gets pushed below the median. This changes in higher di-
mensions and we expect that the GAF will improve in ac-
curacy in higher dimensions.

Other authors have proposed to use formula (18)
without the factor 1/(1—n,). Such a formula follows
from the simplest slave-boson approach and we will call
this the slave-boson formula (SBF). The corresponding
values are also shown in Fig. 4. We see that in one di-
mension one cannot decide between these two possibilities
from the ground-state expectation value of the kinetic en-
ergy alone. Especially in the large-N, limit both converge
to —2t(1—ny), as does the MC result. For large N the
SBF seems to be a better approximation to the MC result,
although for Ny=1 it goes to 0, whereas (18) yields the
correct value, —2t, per hole. As we noted above, there
are grounds to believe that the GAF is better in higher di-
mensions.

The ground-state expectation values of the kinetic ener-
gy for a general value of the band filling, 0<n,<1 and
Njy=2, are shown in Fig. 5. We see that the Gutzwiller
wave function is in good agreement with the exact ground
state in the mixed-valence regime ny~ 1 and that both the
Monte Carlo calculations and the GAF, (18), yield a good
overall agreement, in contrast to the SBF, which gives an
overly small kinetic ground-state energy in this regime.

Next, we consider the change of the kinetic energy with
a finite magnetization m for the case Ny=2. If we write
eGu(m?)=go(1—am?), then we have for the GAF a
value

a=(1/p—1), (19)
while for the SBF we get
a=1/p, (20
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FIG. 5. Kinetic energy per site for Ny=2 as a function of the
band filling ny. The results are shown for the Gutzwiller wave
function (Monte Carlo), the Gutzwiller approximate formula
(GAF), the slave-boson formula (SBF), and the exact ground
state (Ref. 25). L =100 and 10* MC steps per site were used.

with p=2N(0) | g0 | ; N (¢) is the density of states for both
spins, and gy= N (e)ede. (The energy zero is always
taken as the Fermi energy when ny=1 and m =0.) In
three dimensions p is slightly greater than 1 [Ref. 1(d)] so
thal% (19) is negative, which leads to a magnetic instabili-
ty.

In one dimension and for nearest-neighbor hopping,
p=8/m% and p~!~1.23, so that a is reduced by a factor
of 5 relative to (20). To test these formulas we have per-
formed MC calculations with a finite magnetization with
the result a =0%0.05. So the MC result is far below both
values, at least a factor of 5 lower than (19) and a factor
of 25 lower than (20). Clearly, the SBF is a very bad ap-
proximation for the spin susceptibility of the Gutzwiller
wave function.

The fact that a is so small, probably zero, is a conse-
quence of the high spin degeneracy of the exact ground
state.”* Indeed, for the exact solution, a =0 for U = «
(Ref. 25) since the hole moves freely in any given spin
configuration in one dimension. In higher dimensions
this would not be the case.

C. Hole-hole correlations

For a noninteracting gas of electrons, empty sites, or
holes as defined in Sec. III, cannot be regarded as parti-
cles, since neither their total number is conserved nor do
they obey Fermi statistics, as they can be created either
with an odd or even number of fermion operators. Their
spatial correlation function is induced by that of the elec-
trons and is given (Ny=2) in the half-filled case by

<\‘P0 I hrhr’ | WO>=nhz[g0,o(r —r', k;é)]z ’

where 4, =1 or 0, depending on whether there is a hole or
not on site r, n, is the average density of holes (n, =1),
and g, ,(r,k£) is the parallel spin-correlation function of
the noninteracting electron gas, with Fermi wave vector
kf£. In one dimension g, ,(r,kf) is given by

in(kf
ga.a(r’k}%)zl_ = .Fr) 5 21)
(Lk§ /m)sin(ar /L)

where L is the lattice size. From (21) it follows that the
correlation length for the empty sites is about 1/kg, i.e.,
about a lattice constant.

This situation now changes dramatically when we con-
sider an almost-localized liquid. In one dimension, holes
on the infinite-U Hubbard model can be regarded as a
noninteracting gas of spinless fermions.?* For the case of
N; holes in L sites, the exact eigenstates are characterized
by N, k vectors, chosen out of L possible values. Each of
these states has a large spin degeneracy of Ny Nk 24 The
hole-hole correlation function is given by

glf,h(r)zgcr,o(r’k;l") ’ (22)

where kf is the Fermi wave vector of the hole Fermi sea.
Note that (22) is independent of N, magnetization, and
spin configuration. Around each empty site a “Fermi
hole” exists, a region with reduced probability of finding
another hole. The radius of this Fermi hole is of order
1/k}, which is about the mean distance between two
empty sites. This correlation length may be quite large
for a small hole concentration.

Since the Gutzwiller wave function is not the exact
ground state of the kinetic energy, we do not expect to
find (22) exactly as the correlation function. We have cal-
culated the hole-hole correlation function for the
Gutzwiller wave function and the results for different den-
sities are shown in Fig. 6.

We see that the overall shape of the correlation function
for the Gutzwiller function g{7#'? and that for the free hole
liquid gf, are in good agreement. We now discuss
several distinct features.

In r space we notice that the radius of the “Fermi hole”

1.2
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FIG. 6. Hole-hole correlation function g »(#) in real space for
three samples. The degeneracy N,=2, the lattice size L =93,
and the number holes is Ny =3,7,15. the results are shown for
the Gutzwiller wave function (solid line) and gf.(r) [see Eq.
(22)] (dashed line). The dashed line at g(r)=1 is a guide to the
eye. About 10° MC steps per site were used.
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follows that of the free-hole liquid (about the mean dis-
tance between two holes), but the characteristic oscilla-
tions with wavelength 2k are suppressed. This is to be
expected since these oscillations derive from a sharp hole
Fermi surface, which is not present in the Gutzwiller
state. This one sees clearly inspecting the hole-hole corre-
lation in k space. The Fourier-transformed hole-hole
correlation for the same samples (N;=2, L =93, number
of holes is 3, 7, and 15) is shown in Fig. 7. This function
for the free-hole liquid is
172

1— , k<2kf

ki

Zla

gin(k)=| | L

0, k>2kf. (23)

The sharp cutoff for k > 2k} is due to the sharp Fermi
surface, while g2}'%(k) goes smoothly towards zero. An
interesting feature in gf},"l(k) is a kink at exactly 2k§ (kf
is the Fermi wave vector of the underlying electron Fermi
sea), together with a rise for k > 2kf. This illustrates that
the Gutzwiller wave function has a discontinuity in k
space at kf, as required for a Fermi liquid to satisfy
Luttinger’s theorem (also see Sec. IV D).

This last feature is also seen in g;f’;',"z(r), in the short-
range oscillations. Note that there are additional small
bumps, especially for N, =3, due to limited numerical ac-
curacy.

Another intriguing feature of the hole-hole correlation
functions is the systematic enhancement of gf(r) for
small » with respect to gf 4 (7). One possible explanation
might be a built-in effective short-range attraction between
the holes in the Gutzwiller wave function. The origin of
this phenomenon is at present not understood.

In conclusion, we have found a remarkable correspon-
dence between the hole-hole correlation function of the

Gutzwiller state and a free-hole Fermi liquid.

D. Momentum distribution functions

We have calculated n (k) for two values of ny, 2 and

¥. For n(k) we used n(k)zc;lackyg, valid for U = .
For finite but large U we would have to use
alk)=n(k)+i[S,n(k)]+ --- [see (7)]. The results are
shown in Fig. 8 together with n (k) calculated using the
GAF. The Fermi surface is reproduced exactly in accor-
dance with Luttinger’s theorem. Within the Fermi sea
n(k)=1—ns/2, as one can also show analytically.”? The
depletion of n (k) for k>kr near the Fermi surface is
unexpected and results in a jump at the Fermi surface
nearly twice as large as that given by the GAF of
(1—ns)/(1—ng/2). This extra depletion has implications
for the use of GAF for excited states and we will return
to this point later in Sec. V.

E. Total energy

In this subsection we consider the implications when
we combine the results for the spin correlations and the
kinetic energy of the holes. In the limit that U is large

1.5 — ,
g (k) L =93
Nf=2

1.0 .

1 ] K
(o} m/2 T

FIG. 7. Hole-hole correlation function gs (k) in k space for
three different samples. The degeneracy N,=2, L =93,
N,=3,7,15. The results are shown for the Gutzwiller wave
function (solid line) and gi,(k) [see Eq. (23)] (dashed line).
About 10° MC steps per site were used.
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FIG. 8. Distribution function in momentum space »n (k). The
dashed line is the noninteracting Fermi sea. Results are shown
for the Gutzwiller wave function (Monte Carlo) and the
Gutzwiller approximation (GAF). About 10° MC steps per site
were used.
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but finite (U/t>>1), and the density of holes is small

(0<1—nys<<1), both terms in the effective Hamiltonian

will contribute. In this case the energy of | W) is simply
the sum of the two terms,

412

(WG ‘Heﬂ‘ | Ve )= —a(l-nf)2t —/3'7

2

(l—nf)-t—

U (24)

+0

The two coefficients @ and f3 are very close to the best
possible values. The value of a is discussed in Sec. IVB
and illustrated in Fig. 4. The deviation between the max-
imum possible value (i.e., a=1) and the values shown in
Fig. 4 for Ny=2is ~6%. The coefficient 3 is determined
by the value of (s;'s;, ;) and, as discussed in Sec. IV A,
this deviates by only 0.2% from the maximum possible
given by the solution of the Heisenberg chain. Thus it is
clear, at least in this case, that the almost-localized
Gutzwiller state is an excellent compromise choice which
comes close to maximizing both contributions. Also, nei-
ther T, nor T; in H. [Eq. (6)], when operating on
| W6 ), generate empty or doubly sites. Therefore, | Wg )
remains the lowest-energy state of H, even if one consid-
ers the more general class of Gutzwiller wave functions in
which d is allowed to be finite.

The interest in this limit lies in its relation to the
heavy-electron systems. Such systems are described by
the periodic Anderson model. In the case of an asym-
metric Anderson model, a small number of electrons are
promoted out of the otherwise integrally occupied f level
which then can coherently hybridize with the conduction
band. If we then consider the f-electron band itself, it
can be thought of as an almost-half-filled Hubbard model,
but the distribution of occupied f Bloch states in k space
is determined now by the hybridization term and is there-
fore quite different than that in the Hubbard model.
Shiba’s MC calculations'” on the Anderson model also
show strong short-range spin-spin correlations. However,
in his calculations only the energy of the band hybridiza-
tion is included, analogous to including only the first term
in Eq. (24). It is therefore plausible that a further gain in
energy in addition to the terms that Shiba calculated
should come from the spin-spin correlation through the
Ruderman-Kittel-Kasuya-Yosida  (RKKY)  coupling
analogous to the second term of Eq. (24). Indeed,
Hirsch!®® and recently Cyrot!*® have proposed effective
Hamiltonians for the periodic Anderson model which
have a form similar to H.¢ defined in Eq. (10). However,
in the periodic Anderson model it is essential to retain the
hybridization form of the effective Hamiltonian to obtain
a finite value of 1—n;>0 (see Ref. 1) and this, in turn,
changes the form of the spin correlations. Therefore there
remain, it seems to us, some important differences be-
tween the two models which should be reflected in the
effective Hamiltonian. However, it is clear that the
coherent hybridization term is not simply a one-band hop-
ping term and Hirsch’s treatment does not properly ac-
count for the renormalization of the effective f level to the
Fermi energy.

V. EXCITED STATES

In this section we look at the properties of the excited-
state Gutzwiller wave functions. These functions have the
form |Wg)=P | V), where P is the same projection
operator as before and |W.) is an excited-state wave
function of the noninteracting system. We are interested
in the properties of these states because they should be
representative of properties of the system at temperatures
higher than the renormalized Fermi temperature. This
temperature is ~(1—ny)t and therefore is much lower
than U or z. We should point out that the statistical
mechanics of these excited states is nontrivial because of
the overcompleteness of this set of Gutzwiller states.?

For example, in the subspace of zero total z component
of spin, there are {L!/[(L /2)']*}* possible choices of
these functions in a half-filled band of L sites. Each
choice corresponds to a momentum distribution of the
noninteracting function. It is easy to see in the site repre-
sentation, however, that the dimension of the space in
question is actually LI![(L /2)!]%, a far smaller number.
Here we deal only with the properties of individual states
and avoid the issue of entropy. It is good to bear in
mind, however, that the states we discuss are not mutual-
ly orthogonal.

To begin with we examine highly excited states charac-
teristic of temperature T > (1 —ny)t. These are construct-
ed by taking the ground-state k distribution

{—kp,—kp-’r—Z‘lT/L, ...,0, ... ,k]:] ,

and expanding it by a constant factor a (see Fig. 9). That
is, when k; >0, then
21

k,’<TI

L

_ki
o 2

’

where I(x) denotes the maximum integer less than or
equal to x. If k; <O, then the new k are determined by
the requirement that the new distribution is symmetric
about 0. The new {k;} then respect the periodic bound-
ary conditions. If a is itself an integer, then this just cor-
responds to a constant multiplication of the interval be-
tween the {k;}, and the Vandermonde method may be
used for to find expectation values. Otherwise, the
method of Ceperley et al. is used. If a>2, then the k
values may lie in higher Brillouin zones and care must be
taken in the choice of L so that no {k;} are related by a
Bragg reflection. Results for choices of a are given in
Table I for the spin-correlation functions and the kinetic
energy for systems with a single hole.

The first row of the table shows that the spin correla-
tions in the wave function are crucially dependent on the
k distribution. As the k distribution becomes more uni-
formly distributed over the zone, the NN correlations
change from antiferromagnetic to ferromagnetic. We can
understand this in the following way. In the Gutzwiller
ground state, the average magnitude of the wavevectors is
m/4. A wave for a given spin thus will tend to have the
maxima of its associated probability separated by two
sites. A similar wave for the other spin will have the
same property, but the projection operator will enforce the
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TABLE I. Results for various excited states characterized by an expansion factor a, as described in the text. Values for a=1,2,4

are for systems with 78 electrons, 79 sites, and 2.5 10* MC steps per site. For a=

1, 4,3, 3, and X the corresponding parameters

are 30, 31, and 5 10*. Kinetic energies are given in units of ¢, per hole, for the results of the MC calculations (emc) and the Gutzwill-

er approximate formula (eGar).

7
a ! : : ] : y 2 :
(si*sit1) —0.439+2 —0.379+6 —0.265+7 —0.142+9 —0.086+21 —0.006+46 0.165+36 0.048+40
(s;'si+2) 0.162+3 0.106+7 0.020+9 —0.038%+11 —0.027+28 0.024+37 0.083+45 0.000+13
EMC —1.89+1 —1.65+6 —1.38+10 —1.29+6 —0.99+12 —0.96+9 —1.224+27 0.85+31
EGAF —2.51 —2.46 —2.00 —1.52 —1.13 —0.074 —0.0005 0.0005

condition that the maximum of one wave will coincide
with the minimum of the other. The wave functions for
different spins thus mesh in such a way as to give antifer-
romagnetic correlations. Alternatively, one may say that
the exchange hole has just the right size to cooperate with
the smaller projection hole to give a high probability of
opposite spins on neighboring sites. When a equals 2, on
the other hand, the probability maxima for like spins are
only separated by one site and we even get ferromagnetic
NN correlations. Intermediate values of a interpolate be-
tween these extremes. a=4 is similar to a=2, by the
same argument, since in this case the wave vectors are
also roughly uniformly distributed in the first zone. The
application of the same reasoning to the next-nearest-
neighbor (NNN) correlation indicates that, as a goes from
1 to 2, the NNN correlation should change from fer-
romagnetic to antiferromagnetic and finally back to fer-
romagnetic. This expectation is borne out by the first and
second rows of the table.

We now turn to the kinetic energy. The first and most
basic fact is that the ground state (a¢=1) does in fact have
a lower kinetic energy than all other Gutzwiller states, as
seen in the third row of the table. In fact, as the momen-
tum distribution expands, the kinetic energy increases
quite rapidly at first, then more slowly, leveling off when
the uniform distribution is approached. Second, the
Gutzwiller ground state has a kinetic energy within 10%
of that of the (highly degenerate, U = «) exact ground
state, — 2t in our units. The latter has the hole uniformly
distributed in a background whose spin configuration is
arbitrary. What is interesting about the development of
the kinetic energy as « increases to 2 is that it remains
negative, which is below the average energy of the exact
eigenstates at U = . This is an indication that most of
our overcomplete set is concentrated in the low-energy

k
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FIG. 9. Distribution of k states for some excited states calcu-
lated. The solid circles represent the occupied states. a=1 cor-
responds to the ground state.

part of the state space, qualitatively confirming the form
of the ansatz used by Seiler et al.?® in their phenomeno-
logical description of the entropy of the states.

The Gutzwiller approximation for the kinetic energy of
the excited states gives too low a value for states near the
ground state. This comes from the fact that the denomi-
nator in (18) overestimates the blocking effect of like
spins in one dimension, where, unlike two and three di-
mensions, the electrons are effectively spinless. This prob-
lem should not survive in higher dimensions. A second
defect of the Gutzwiller approximation for the expectation
value of the hopping term in | W&) is that it merely scales
as the free kinetic energy. However, it is now evident
from the foregoing discussion that when the projection
operator is present finer details of the momentum distri-
bution may become important. This is illustrated by the
difference in kinetic energy between the a =2 and 4 states.
When a=2, the {k;} are

2m
L

whereas for a =4, the distribution is

{...,—4,—2,0,2,4,...},

ELE{...,—8,—7,—4,——3,0,3,4,7,8,...} .

Both are more or less uniform, but the correlations in k
space are quite different. It is therefore not so surprising
that the kinetic energies for a =2,4 are so different, the ki-
netic energy being, after all, a short-range (off-diagonal)
correlation in real space.

It is also of interest to examine the low-lying excited
states. Since the energy difference between these states
and the ground state is small, the use of the Vander-
monde method is indispensable. The following one- and
two-particle states are accessible to this method,

| \I/éx) =Clj'rckpt I ¥o) ,
iyt @3)
| Wik ) =ci ek iCrpirps | Wo)

with k'=kr+ Ak, Ak =27 /L. In the Appendix we show
that the determinants we require are of the Vandermonde
form multiplied by the symmetric factors ¥,, z,, and
3, Zm- The results of these calculations are shown in
Tables II and III. Even with the use of the Vandermonde
method the accuracy is limited since we have to subtract
two large numbers.

We first turn to the results for the kinetic energy,
shown in Table II. In the first three rows results are
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presented for one hole in chains of increasing length L.
From Landau theory and the fact that the effective mass
is proportional to (1—n f)’l, we expect that the total-
energy difference Ae=Ae.,—¢, should scale with
(1—ny)Ak. The sixth column of Table II shows that this
occurs within the numerical accuracy. The seventh
column shows the values obtained by the GAF. We see
that the GAF systematically overestimates Ag, i.e., it un-
derestimates m. The eighth column shows the values for
the SBF. As for the total kinetic energy, the MC result
lies in between the GAF and SBF (see Sec. IV B).

In Sec. IVD we presented the results for the momen-
tum distribution function. If the self-energy is k indepen-
dent and a function only of the energy variable, then the
discontinuity at the Fermi surface is simply equal to
m/m*. The fact that we find that the effective mass is
substantially larger than that given by the GAF, while at
the same time the discontinuity in the momentum distri-
bution is nearly twice as large than that given by the
GAF, implies that the momentum dependence of the
self-energy is substantial.

The last row of Table II shows the results of calcula-
tion for N, =7, L =93, i.e.,, a large hole density (1—ny).
In this case the ratio Aenc/[(1—ny)Ak] is much larger
than the previous case, where 1—n, was smaller. This
implies that m /m™ has a substantial correction to the
linear behavior in 1 —n, predicted by the GAF and SBF.

Lastly, we discuss the change in the spin-correlation
function. We are interested in the contributions
~(1—ny)Ak and ~(Ak)*. To distinguish these terms we
have calculated Ag; first for the same conditions as for
the kinetic energy (1—ny>0, Ak >0) and second for the
half-filled case (1—ny=0, Ak >0) (see Table III). This is
necessary since for the case of one hole 1—ny~Ak and,
therefore, we need both calculations to distinguish the two
contributions. For L =93 the numerical accuracy is
again too limited for any definite conclusion.

From the results for the half-filled case we deduce that
Ag is dominated by the term ~(Ak)?, and from compar-
ison with the results for the cases with one hole we see
that the contribution ~(1—n,)Ak to Ag, is at most 10%.
This now has a very interesting consequence, namely that
the contribution of the spin-correlation energy to the
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linear specific heat is very small. This follows directly out
of the Landau theory for Fermi liquids since Ag; ~(Ak)?
and not of order Ak. We have seen before (Sec. IV E)
that the spin susceptibility, on the other hand, is dominat-
ed by the spin-correlation energy. Then we have for the
Wilson ratio

X /ey~ /U0 /[(1=np)t] '~ U1 —ng)/t ~1

in the regime in which we are working, i.e., where both
terms of H.g=T} + Veorr yield a comparable contribution
to the ground-state energy (see Sec. IV E). This is clearly
in allccordance with experiments for heavy-electron met-
als.

The main conclusion we wish to draw from this section
is that the Gutzwiller ground state is distinguished from
the excited states both by having a very low kinetic energy
and very strong antiferromagnetic correlations. We have
seen that the “filled Fermi sea,” in conjunction with the
projection operator, is ideal for producing these two
effects simultaneously.

VI. CONCLUSIONS

In this work we examined various properties of
Gutzwiller wave functions using a Monte Carlo technique
to numerically evaluate the expectation values. Our cal-
culations were restricted to one dimension only to achieve
better numerical accuracy, but our interest is really in
three dimensions, where a Fermi-liquid state is possible
and the Gutzwiller wave function can be expected to be a
good approximation.

Two clear results emerge from this work. First, the ap-
proximate formulas that Gutzwiller derived many years
ago give a good value of the kinetic energy and the mag-
netic susceptibility. The agreement between our results is
not perfect, however, and our MC results for the kinetic
energy in one dimension taken at face value lie in between
the GAF and SBF, the latter being the simplest slave-
boson formula. However, there are reasons to believe that
in higher dimensions the GAF will be a better approxima-
tion than the SBF. If we look at the spin dependence of
the kinetic energy, then the agreement with the GAF is
decidedly better than the SBF.

TABLE II. Results for excited states where an up and a down electron (Ny=2) have been excited by

Ak =2w/L from the Fermi surface.

Here, L and N, are the number of sites and holes, and

1—ny=N,/L is the density of holes. Aemc, Aegar, and Aespr are the differences of the expectation
value of the kinetic energy relative to the ground state in units of #, for the results of the MC calcula-
tions, the Gutzwiller approximation formula (GAF), and the slave-boson formula (SBF), respectively.
These energies divided by (1—ns)Ak yield the effective masses (last three columns). Note that the densi-
ty of holes, 1 —ny, for the fourth row is about twice as large as for the other samples. The corresponding

effective mass (sixth column) is anomalously high.

Agmc AgGAF Aespr
L N 1— Ak A
’ s eme (1—n,Ak (1—n,)Ak (1—n,Ak
31 1 0.033 0.203 0.035+0.005 5.22 7.75 4
43 1 0.023 0.146 0.017+0.004 5.06 7.82 4
51 1 0.020 0.123 0.012+0.005 4.88 7.85 4
93 7 0.075 0.068 0.076+0.023 14.9 7.44 4
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The second clear result concerns the short-range spin
correlations in the Gutzwiller wave function. Such corre-
lations were first found by Kaplan et al.' for the case of
a half-filled band in one dimension in the limit U— .
We find that they persist, not surprisingly, into the case
when ns=1 but 1—nys<<1. In this case the GAF de-
scribes an almost-localized Fermi liquid. Our results then
demonstrate explicitly that it is possible to have a Fermi-
liquid state with strong spin correlations. Shiba’s MC cal-
culations on the 1D Anderson model!’ also showed
stronig spin correlations among the f electrons, although
the exact form was different to ours, because the Bloch
states occupied in the hybridized f bands and in the
ground state of the single band differ.?’ Our calculations
demonstrate that the form of the spin correlations is sensi-
tive to the distribution of occupied Bloch states.

These results have clear implications for the energy bal-
ance between the almost-localized or heavy-Fermi-liquid
states and the fully localized magnetic or RKKY states.
They show that given the right crystal structure, etc., it is
possible to form the Fermi liquid with only a small
change in spin correlation so the energy balance between
the two states is a subtle one. Perhaps the real criterion
deciding between these states is determined by how good
the spin correlations can be in the Fermi liquid, which, in
turn, depends on crystal structure, band filling, etc. This
would agree with the recent experiments of Aeppli et al.,
who find strong spin correlations characterizing the low-
temperature Fermi-liquid state in CeCus (Ref. 27) and
UPt; (Ref. 28).

Note added in proof. Very recently, Metzner and
Vollhardt (unpublished) developed a diagrammatic tech-
nique to calculate the expectation values of diagonal
operators in the ground-state Gutzwiller wave function
exactly in one dimension. Their result for n (k) agrees
well with ours. Gebhardt and Vollhardt (unpublished)
applied these techniques to spin-spin, hole-hole, and other
correlation functions. Again, the agreement is excellent.
We are grateful to these authors for communicating their
results before publication.
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TABLE III. Results for excited states where an up and a
down electron (Ny=2) have been excited from the Fermi surface
by Ak =27/L. Hence, L and N, are the number of states and
holes, Aqi = {s7s7+1)ex— (575741 ) grouna. The last column shows
Ag/(Ak)?, which is nearly constant in the two cases of finite
density of holes (first four rows) and zero density of holes (last
four rows).

L N Ag, Agy /(D)
31 1 0.0063+0.0004 0.153
43 1 0.0033+0.0002 0.155
51 1 0.0022+0.0003 0.145
93 7 0.0006+0.0002 0.121
31 0 0.007+0.0002 0.169
43 0 0.0037+0.0004 0.172
51 0 0.0026+0.0003 0.171
93 0 0.0008+0.0003 0.175

APPENDIX

In this appendix we show how we can calculate—with
the Vandermonde method-—an excited state where an up
or down (or both) spin is promoted from the Fermi sur-
face to k'=kp+2m/L. We have to calculate deter-
minants of the form (see Sec. II)

N,—2 N, |
1 z z% z1° z17%]
Ny—2 _N
D=|1 2z, z3} z,° zz"j.
2 N,—2 _N,
1 zy,  zi, zZy, v, |
D is a homogeneous polynomial in z; - - - zy_ of degree

(Ng—1)N,/2+1.
zeroes z, . . . ,Zy, Similar for z,, ..

As a polynomial in z;, it has the

.»2zy,. That means

D=1]] (zi—z)f(zy -~ 2n,) .
(il%jj)

Since D is antisymmetric, f must be a symmetric homo-
geneous polynomial of order 1 in z;---zy, ie,

f=zi+z2+ - 42N,
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