
ANNALS OF PHYSICS 189, 53-88 (1989) 

Physics of Projected Wavefunctions 

CLAUDIUS GROS* 

Institut ftir Theoretische Physik, ETH-Hiinggerberg, 8093 Ziirich, Switzerland 

Received July 14, 1988 

We present and discuss a variational approach to the one band Hubbard model in the limit 
of a large on-site Coulomb repulsion. The trial wavefunctions are the projected wavefunctions, 
generalized Gutzwiller wavefunctions. We discuss in detail the definition of these 
wavefunctions, the numerical methods used to evaluate them, their properties, and their 
physical relevance. Depending on the kind of parametrization used, the projected 
wavefunctions can describe a nearly localized Fermi liquid, an antiferromagnetically ordered 
state, or a quantum spin liquid. The physics of these three types of wavefunctions is described 
in detail. We discuss their relation to a proposed phase diagram of the two-dimensional 
Hubbard model and to results obtained by other approaches to the Hubbard model. The 
results obtained by numerical evaluation of the projected wavefunction are reviewed. The 
method used for the numerical evaluation, the variational Monte Carlo method, is described 
in detail. Finally we discuss the relation between a quantum spin liquid and the resonating 
valence bond state, which has been proposed, by P.W. Anderson, as a reference state for the 
Cu-0 superconductors. In particular, we examine the question whether a quantum spin liquid 
is intrisically superconducting or not. 0 1989 Academic Press, Inc. 

INTRODUCTION 

The field of variational approaches to the one- and two-dimensional Hubbard 
and antiferromagnetic Heisenberg model is in rapid development. Recently, interest 
in these models increased further, when Anderson [ 1 ] suggested a close relation 
between these models and high temperature superconductors. Very recently, 
Birgeneau et al. [2] added additional experimental support to this point of view. 

The physics of the two-dimensional Hubbard model is complex and far from 
being fully understood. As a function of the bandfilling and magnitude of the on- 
site Coulomb repulsion, ferro-, antiferro- and paramagnetic phases are expected. In 
Section 1 we give an introduction to the Hubbard model and discuss the relation 
between the antiferromagnetic Heisenberg Hamiltonian and the Hubbard model in 
the limit of large on-site Coulomb repulsion. 

As fully interacting many-body systems, neither the Hubbard nor the Heisenberg 
Hamiltonian can be treated by standard many-body perturbation theory, since no 
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small parameters are present. The variational approach to these models has 
therefore been intensively followed, since it is one of a few nonperturbative metho- 
des available in this context. In Section 2 we first give a short overview over some 
methods in use to approach the Hubbard Hamiltonian and then introduce and 
discuss in detail the trial wavefunctions we use for our variational approach. These 
are the projected wavefunctions, generalized Gutzwiller wavefunctions. Exploiting 
fully the variational degree of freedom of the projected wavefunctions, they can 
potentially describe both the para- and the antiferromagnetic region of phase space. 

The calculation of the properties of these wavefunctions is not straightforward. A 
variational Monte Carlo method must be used to evaluate the properties of the 
projected wavefunctions numerically. This method is presented and discussed 
thoroughly in Section 3. The problem of the extrapolation of results obtained for 
finite lattice to the thermodynamic limit is discussed in this context. 

Then, in Section 4, the properties and the physics of the projected wavefunctions 
in one and two dimensions are discussed in detail. This is done with the help of 
results obtained by the variational Monte Carlo method. With respect to the results 
obtained for one dimension, we discuss the concept of a nearly localized Fermi 
liquid. We then show that a certain projected wavefunction, the projected Fermi 
sea, should give a good description of this state. In two dimensions we focus on the 
concept of a quantum spin liquid and discuss its relation to the resonating valence 
bond state, introduced by Anderson [l]. We show that the projected d-wave BCS 
wave function is a good candidate for a quantum spin liquid. This would then mean 
that a quantum spin liquid is intrinsically superconducting, with possible relevance 
for the high temperature superconductors. 

SECTION 1. THE HUBBARD MODEL 

1. Introduction to the Hubbard Hamiltonian 

We begin with a short introduction to the Hubbard model. The Hubbard model 
describes fermions with only one orbital degree of freedom and spin 4, when the 
on-site Coulomb interaction in a tight binding description is dominant. 

Let us denote by c& the Fermion creation operator on site i with spin 0 = 1, t. 
The Hubbard Hamiltonian then takes the form 

H= - 1 ti,j(C&Cj,o + CJ+Ci,o) + UC ni,lni,t. (1) 
<i,i>,o I 

Here, the ti,j are the one-particle hopping matrix elements and U > 0 is the on-site 
correlation energy. 

We define by c,& = l/G CR eiRk cR+.~ the creation operator in k-space. L is the 
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total number of lattice sites, for a finite lattice with periodic boundary conditions. 
The kinetic energy takes then the form 

k,a 

e(k)= -l/,c C ei’R-R”‘ktR,R,. 
(2) 

R,R’ 

Throughout this paper, we will mainly consider the case where tii = t > 0 for (i, j) 
nearest-neighbor (n.n.) sites, and zero otherwise. For a two-dimensional (dim) 
square lattice, E(k) takes the form 

E(k) = -2t(cos(k,) + cos(k,.)). (3) 

Here k, and k, are the x, y-components of k and the lattice parameter is set equal 
to 1. The generalization of E(k) to different lattices is straightforward. In Fig. 1, the 
density of states and the Fermi surfaces are shown for various band fillings, n, in 
two dimensions. 

For the half-filled case (n = I), the Fermi surface is perfectly nesting; i.e., the 
Fermi surface is invariant with respect to a translation by Q = (71, rr), which is half a 
reciprocal lattice vector. This is true also in one and three dimensions, for certain 
lattices. Therefore, for n = 1, the system is subject to an antiferromagnetic instability 
for arbitrary small values of U. This can be seen, e.g., in RPA approximation [S]. A 
gap will open at the Fermi surface and the system will be an insulator for all ratios 
of t/U, at zero temperature. For a more general band structure E(k), we expect that 

-1.0 -0.5 0.0 0.5 1.0 

k,/n 

FIG. 1. (Left) Fermi surface of electrons on a two-dimensional square lattice with nearest-neighbor 
hopping only. Band fillings are n = 0.25, 0.5, . . . . 1.5, starting from the inner surface. Note that the Fermi 
surface for the half-filled case is perfectly nesting. (Right) Density of states for noninteracting electrons 
on a two-dimensional square lattice with nearest-heighbor hopping only. The singularity at the origin is 
logarithmic. Both figures are taken from Ref. [3]. 
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the system will remain metallic for small U. Only when U becomes larger than 
critical U (UC) of the order of the bandwidth W, is a transition to a Mott insulator 
[4] expected. In magnetically nonfrustrated systems, this transition should be 
accompanied by antiferromagnetic ordering. In a frustrated system, however, this 
could be a transition from a paramagnetic metal to paramagnetic insulator. 

The frustration can arise from two sources: it can be a lattice effect; i.e., a fee or 
triangular lattice with only n.n. interaction is frustrated, or it can be a consequence 
of competing interaction between, e.g., n.n. and next-nearest-neighbor (n.n.n.) 
interactions. In this case, the Hamiltonian (Eq. (1)) would have a large n.n.n. 
hopping term in addition to the n.n. term. The effects resulting from frustration are 
discussed further in the next two sections. 

2. Large U Expansion 

For the remaining part of this paper, we will consider what happens when U is 
large. With large U one generally means that U should be much larger than the 
bandwidth W= 2zt. Here z is the number of n.n. sites. In Section 1.5 we discuss in 
more detail what large U means with respect to the Mott critical U,. 

In the limit of large on-site repulsion U, real doubly occupied sites are 
energetically very unfavourable and therefore suppressed. Only virtual doubly 
occupied sites will be present, i.e., they will be bound to a nearby empty site, as we 
explain in Section 1.5. 

The most convenient way of treating these virtual doubly occupied sites is to 
perform a unitary transformation on the Hilbert space, eiS, which eliminates high 
energy processes in lowest order in t/U. These are hopping processes, which change 
the total number of doubly occupied sites, as illustrated in Fig. 2. 

The other hopping processes, which do not change the number of doubly 

FIG. 2. Principles for the canonical transformation, which leads from the Hubbard Hamiltonian to 
Herr. (Left) The kinetic energy operator T is split, with respect to the total number of doubly occupied 
sites, into a diagonal (Tdia) and a nondiagonal (T,J term. (Right) The lowest Hubbard bands, which 
are defined by the density of states of (r,,,). For large on-site repulsion 17, the different Hubbard bands 
are well separated. Therefore T,, correspond to high energy process and can be treated in perturbation 
theory, while Tdla describes low energy processes. 
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occupied sites, are low energy processes and will be retained in the transformed 
Hamiltonian 

=H+i[S, H]+i2/2[S, [S, H]]+ . . . . (4) 

Up to second order in t/U, Hen takes the form [S]. 

H,*= T+ Hz;) + Hc3’ eff 3 

T= m-t C (U&Uj,o + UjToUi,m) 
<i,j>.a (5) 

H$‘=4t2/U C (Si.S,-ninj/4) 
<i,i> 

H$+‘= -t2/U c (a’ r+r,a”~-~ui,-~ai+~~,~+u~~,-~u,t,ui.-~ui+~:~~~ 
i,rZr’,o 

Here Si are the spin operators on site i, a& = (1 -n, -,) c& with ni= ni,l +ni,T, 
ni,g = C&Ci,o. (4 .i> are pairs of n.n. sites and i + r denotes a n.n. site of i. T is the 
kinetic energy of the holes and H,, (2,3) the two- and three-site contributions, respec- 
tively. 

This effective Hamiltonian is valid only in the subspace of no doubly occupied 
sites, since it corresponds to the first terms of a perturbation expansion in t/U 
in this subspace. In the half-filled case, H,, reduces to the antiferromagnetic 
Heisenberg Hamiltonion (AFH), with a n.n. coupling constant J=4t2/U. In this 
limit, H,, depends crucially on the band structure [6]. If a n.n.n. hopping term is 
present in (1 ), then we would have to add to H,, a n.n.n. antiferromagnetic spin- 
spin coupling term. If this term is large, then the resulting model will be frustrated. 

3. Case of Infinite U 

Herr, as given by (5), corresponds to the first terms of an infinite expansion series 
in t/U. Before we discuss the convergence radius of this series and the quality of the 
approximation (5), we consider the limit f/U + 0, where this expansion is surely 
valid. 

In this limit, only the kinetic energy term for the holes survives in the expansion 
for H,,. When no holes are present, the Hamiltonian is identically zero, and all 2L 
states are degenerate. When a few holes are present, one interesting question is 
whether the ground state is paramagnetic or ferromagnetic. Nagaoka [7] showed 
that for exactly one hole, the system is ferromagnetically ordered, when the lattice is 
nonfrustrated. 

The physical reason for this Nuguoku effect is the following: When all spins point 
in one direction, the hole can move freely and has therefore minimal kinetic energy. 
On the other hand, when the spins point randomly in every direction, the holes 
disturbs the local spin configuration while it propagates and one expects a 
reduction of the bandwidth. 
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The Nagaoka effect is very sensitive to the form of the band structure. The 
argument we present in the following has been pointed out by Einnarson [8]. 

The density of states for a system with one hole can be calculated by a moment 
expansion of the diagonal part of the real space hole-hole Greens-function [9]. 
This moment expansion can be done for different background spin configurations. 
The spin configuration around the hole can be ferro-, para-, or antiferromagnetic. 
By a calculation and comparison of the lower band edge, for one hole in one of 
these three different spin configurations, one can decide which is energetically 
favourable. 

We now consider a square lattice with n.n. (- tr) and n.n.n. (- f2) hopping 
matrix elements and U= co. Only those paths contribute to the diagonal part of the 
hole-hole Greens function, in which the hole returns to its initial site. Of these 
paths, the most important are the self-retracing paths [9]. These are paths where 
the hole hops exactly the same way backwards and forwards, as illustrated in 
Fig. 3(a). All these self-retracing paths give a positive contribution to the Greens- 
function; ( - tr )*“( - f2)2m, where n, m are integers. 

For non-self-retracing paths, like those illustrated in Figs. 3(b) and 3(c), destruc- 
tive interference might arise whenever - t2 is negative. (Note that - t, and - t, are 
defined as the hopping matrix elements in Eq. (l).) The paths illustrated in 
Figs. 3(b) and 3(c) contribute a term - (-tr)*( - f2) to the hole-hole Greens- 
function. This contribution is destructive, when t, > 0. This path contributes in the 
ferromagnetic case (Fig. 3(c)) but not in the antiferromagnetic case (Fig. 3(b)), 
since in this case the spin configuration is not the same at the end as in the 
beginning. 

The occurrence of destructive interference depends only on the absolute sign of 

FIG. 3. Illustration of some paths contributing to the diagonal hole-hole Greens-function for infinite 
U and nearest-neighbor (-t,) and next-nearest-neighbor (- t2) hopping. (a) A self-retracing paths of 
order ( -rl)*( -r#. Note that the spin configuration is restored at the end. (b) and (c) A non-self- 
retracing path of order (- r,)*( - tz) for an antiferro- and a ferromagnetic spin configuration, respec- 
tively. Note that the spin configuration is restored for the ferro- but not for the antiferromagnetic case. 
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tZ. In a t, hop, the hole changes A-B sublattice, but not i a t2 process. Any 
contributing path contains therefore an even number of t, processes. 

This destructive interference, for t2 > 0 in the ferromagnetic case, is an indication 
that the ground state might be antiferro- or paramagnetic if t2 is large enough. 

4. Convergence Radius of H,, 

Now we discuss in some detail the convergence radius for the expansion of He,= 
eisHediS in t/U. S is determined by requiring that in H,, no terms which mix dif- 
ferent Hubbard bands should be present, i.e., states with different numbers of doubly 
occupied sites. This can be done recursively in each order of t/U, by expanding S in 
t/U. This transformation corresponds to an infinite perturbation expansion within 
the subspace of no doubly occupied sites. 

Whereas the Hamiltonian transforms according to Hell= eisHeeiS, the 
wavefunctions transform like lIC/ea) = eis I$). Here Ir,Qea) has a fixed number of 
doubly occupied sites; i.e., it is an eigenstate of Ci PZ~.~+. Within an exact 
approach it is equivalent [lo] to work with H,, and ltiefl), or with H and ICC/). 

Now, when the expansion for H,, converges for n = 1, we are dealing with a 
system with a Mott insulator ground state, since we are doing perturbation about a 
localized state. In terms of the original Hilbert space, this means that doubly 
occupied and empty sites are bound [S]. d.c. conductivity is therefore zero, since 
these excitons of doubly occupied and empty sites are neutral. Therefore we expect 
that, for n = 1, the expansion series for H,, converges for all V > U,. 

For the Hubbard model with n.n. hopping only, the situation is special. No Mott 
transition is expected and the ground state should be insulating for all ratios of t/U, 
in the half-tilled case. This is surely true in one dim, where the exact solution is 
known [ll]. In two and three dim, this is expected to be a consequence of the per- 
fectly nesting properties of the Fermi surface at half tilling. The antiferromagnetisms 
for both large and small U, are commensurate with the lattice spacing. A 
continuous transition from small to large U is expected. 

The convergence radius of H,, should therefore be infinite in this case. Physically, 
this means that the properties of the system vary smoothly with t/U. In this 
situation, we expect that the approximation of H,, by Eq. (5), i.e., by the terms up 
to second order in t/U, should be quite good for values of U down to about the 
bandwidth. 

Since Hen, I$err) and H, I$ ) are related by means of a unitary transformation, 
within an exact approach, it is equivalent to work with either the transformed or 
the original Hilbert space. In a variational approach, this is no longer true. In the 
original Hilbert space, the variational wavefunctions should have bound empty and 
doubly occupied sites, in order to describe correctly the physics of the ground state. 
Such wavefunctions are very difficult to write down. On the other hand, a 
straightforward procedure exists to construct trial wavefunctions with no doubly 
occupied sites, as necessary for the ground state of H,,. This can be done by a 
projection operator, as we explain in detail in Section 2. It is therefore much more 
convenient, in a variational approach, to work in the transformed Hilbert space. 
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The backwards transformed wavefunction, I$) = exp( - is) Itiefl), has then 
automatically bound empty and doubly occupied sites. 

Another reason for a broken equivalence between the two Hilbert spaces is of 
course the approximation of HeR by the first two terms in t/U expansion (Eq. (5)). 
Only when the complete perturbation series is taken into account, is the 
equivalence exact. 

5. Phase Diagram 

Up to now, we have discussed the physics of the Hubbard model only exactly on 
the axes in a (1 - n) versus t/U phase diagram. We now take a look at the whole 
phase diagram. Concretely, we consider H,, on the two-dim square lattice with n.n. 
interactions only. 

At finite temperature, long range magnetic [12] or superconducting [13] (s.c.) 
order is not possible in this model, since a continuous symmetry cannot be broken 
in two dimensions at finite temperatures. But for a system with weakly coupled 
layers, a quasi-two-dim system, a true three-dim phase transition can occur at finite 
temperatures, driven by the in-plane fluctuations. We consider such a system in 
what follows. 

In Fig. 4 we show the phase diagram. It is not clear to which doping concen- 
trations, 6, = (1 - no), the antiferrromagnetic phase (AF) extends, and whether 6o 
is finite. The extension of the ferromagnetic phase (F) to finite 6 is still unclear. 

For very small particle concentrations n + 1, the kinetic energy (- -nt) 
dominates with respect to the interaction energy ( - -n*J), since the interaction is 
short ranged. We expect therefore Fermi liquid behavior at low temperatures com- 
pared to the Fermi temperature [14]. Whether this Fermi liquid is unstable against 
S.C. pairing, due to the residual interactions, is unclear. If so, the transition will be 
BCS-like, since the system scales to the weak coupling (w.c.) limit for n + 0. Note 
that this behaviour is opposite that of the free electron gas, where the interaction is 
long ranged and dominates at low densities. 

I 
W.C. 

NLFL RVB 

I AF 

0 0.5 w/u I 

FIG. 4. Phase diagram for the two-dimensional Hubbard model with nearest-neighbor hopping only. 
Here n is the density of particles, W=2zt the bandwith, and U the on-site repulsion energy. The 
abbreviations are F for ferromagnetic, AF for antiferromagnetic, NLFL for nearly localized Fermi 
liquid, RVB for reasonating valence bond state, and W.C. for weak coupling regime. 
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Now we examine the region where (1 -n) Q 1, but large enough to avoid the 
antiferromagnetic instability. For these densities the properties of the system depend 
very strongly on the relative value of the kinetic to that of the interaction energy. 
We estimate both contributions as follows: For small doping concentrations, the 
kinetic energy per hole is about -azt, with c( corresponding to the reduction of the 
bandwidth by the interaction (0.5 < CI < 1.0 < 1.0 [9]). The interaction energy can 
be approximated by the two-site contributions, which are dominant for small 
doping. In order of magnitude ( Si. Sj) - -$ so that the total energy per site sums 
to - (1 - n) azt - OSzt*/U. Two limits are possible. 

First, if t/U G 2cl(l -n), then we are in the regime of a nearly localized Fermi 
liquid (NLFL). It is a Fermi liquid, with a strongly renormalized Fermi tem- 
perature TE - (1 -n) TF and strong short range antiferromagnetic spin-spin 
correlations [lo]. These antiferromagnetic correlations are however not a con- 
sequence of the magnetic interaction, but are due to the strong on-site correlation, 
i.e., the exclusion of doubly occupied sites. Furthermore, these correlations will 
disappear at a temperature scale of TF. * The NLFL is close to both the ferro- and 
the antiferromagnetic phase. In Section 4.2 we argue that physically the NLFL is 
nearly antiferromagnetic and not nearly ferromagnetic and that the transition to the 
ferromagnetic phase should be of first order. 

On the other hand, if 2cl(l -n) - t/U, then the antiferromagnetic interaction is 
dominating. We also have short range antiferromagnetic spin-spin correlations, but 
of different origin, due to the interaction. They disappear only at a temperature 
scale of J. The nature of this state is complety different from that of a Fermi liquid. 
Anderson proposed [l] that it is a new quantum liquid state, which he called a 
resonating valence bond (RVB) state. In particular, he suggested that this state 
might show superconductivity with a very high transition temperature, determined 
by J. 

In the following, we try to describe these two states, NLFL and RVB, by 
variational wavefunctions. In Fig. 4, no boundary is drawn between the RVB and 
the NLFL state. Within our approach by variational wavefunctions, we argue 
(Section 4) that the ground state of the RVB state is superconducting. Our trial 
wavefunction for the NLFL is on the other hand a Fermi liquid wavefunction. It is 
unclear whether this state is unstable against S.C. due to the residual spin-spin 
interactions. If so, we would expect this S.C. state to have the same symmetry as the 
S.C. ground state of the RVB ground state. This is because the nature of the inter- 
action is the same for both states. In this case, the ground states of the NLFL and 
the RVB would go continuously from one to another. 

SECTION 2. WAVEFUNCTIONS 

We begin with a short review of some methods in use to approach the Hubbard 
Hamiltonian and the introduce the trial wavefunctions for our variational 
approach. The Hubbard Hamiltonian had been in use implicitly [ 151 for some 
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time, when Hubbard gave it the explicit form [16a] of Eq. (1) and discussed the 
magnetic phase diagram by Hartree-Fock and Greens-function techniques. 
Furthermore [16b], he indtroduced, for the large U limit, the atomic represen- 
tation (see Eq. (5)) and the operators 

Yi,, = (1 - ni, -0) ci.o (6) 

which link the different states in the subspace of no doubly occuied site, i.e., the 
empty site and singly occupied site (indexed with 0 and 6, respectively). Since they 
do not obey fermion anticommutation rules, normal perturbation techniques are 
not applicable. But they form an algebra, e.g., [Xt,,, #,,,I + = X&, + 6,,,,X&. 
This property has recently been used by Ramakishnan and Shastry [17] to 
formulate a systematic l/z expansion, where z is the number of nearest-neighbor 
sites, for the case of infinite U. 

After Hubbard’s formulation of the Hubbard Hamiltonian, Lieb and Wu [11] 
solved it exactly for one dimension. The resulting integral equations were evaluated 
numerically [ 181 and analytically [ 191. In higher dimensions, no exact solution is 
known. In the limit of small U, the Hubbard model can be treated analytically by 
scaling theory [20]. 

Most approaches, mentioned so far, investigated mainly ground state properties. 
At high temperatures, high temperature expansions are possible [21], and normally 
linked to a t/U expansion. Interest [22] was concentrated mainly on the 
ferromagnetic T,. 

One of the most promising, in principle, exact techniques is the numerical Monte 
Carlo method at high but finite temperatures [23,24]. With this method, the 
partition function for all small system (in two dim the size is typically between a 
4 x 4 and an 8 x 8 lattice) is evaluated with use of the Trotter formula. The fermion 
anticommutation rules greatly increase the numerical difficulties [3]. 

For very small systems, exact diagonalization of the Hubbard model is possible. 
Since the number of states for the full Hamiltonian increases very fast, the studies 
have concentrated so far mainly on the case with U = 00 and H,, (see Refs. 25,261, 
respectively). For the half-tilled case, where H,, reduces to the AFH Hamiltonian, 
Oitmaa and Betts [27] diagonalized lattices with up to 16 sites, by exploiting the 
full symmetry group. They find that the ground state has, in the thermodynamic 
limit, antiferromagnetic long range order. 

Recently [28], their method to extrapolate the data to the thermodynamic limit 
has been questioned in view of results from spin-wave theory for small systems. 
Their qualitative findings, however, have been confirmed [28,29]. 
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1. Variational Approach 

The approach by variational wavefunctions is complementary to that described 
above. The idea is to describe the ground state of the system by wavefunctions, 
which contain the essential physics. 

We now turn to describing the wavefunctions that we consider for our approach 
trial wavefunctions for the ground state. Other variational wavefunctions for the 
half-tilled case are discussed together with the presentation of the results for our 
approach in Section 4. We will not attempt to describe the Hubbard Hamiltonian 
(see Eq. ( 1)) directly. As discussed in Section 1.4, we will instead concentrate on H,, 
(see Eq. (5)), which is valid in the subspace of no doubly occupied sites. In 
Section 1.4 we denoted wavefunctions in this subspace by Ill/err). We will drop in 
the following the subscript “eff,” since we will work exclusively in the projected 
subspace, i.e., in the subspace with no doubly occupied sites. 

The trial wavefunctions we consider have the general form 

bk)=PD=o wo> 
=n (1 -n,,tni,l) I$o>. (7) 

Here I$,,) is a simple Hartree-Fock wavefunction, P,=, is a projection operator, 
which projects on the subspace of no doubly occupied sites, and i runs over all 
lattice sites. 

These kinds of trial wavefunctions were first proposed by Gutzwiller [30]. He 
considered a simple Fermi sea for \lc/O). We will therefore define 

(Gutz) = P,=, n CtL IO>. (8) 

Originally [30], Gutzwiller examined a more general wavefunction, namely 

I$> =p, I$o> 

= fl(l- (1 - g)n,T4,L) Wo>+ (9) 

where ItiO> is the Fermi sea and 0 < g < 1. For g > 0, this can be only a good trial 
wavefunction for the Hubbard Hamiltonian in the metallic region, U < U,, since in 
this wavefunction the empty and doubly occupied sites are not bound [31]. Hence 
this wavefunction also has a finite conductivity in the half-tilled case and will 
therefore not be a good trial wavefunction for the Mott insulating state. Since we 
are interested in describing the ground state for U > U,, we will concentrate on 
wavefunctions of the form of Eq. (7), as trial wavefunctions for Heff. 

All wavefunctions I$) with no doubly occupied sites can be written in the form 
of Eq. (7). For a variational approach, one must specify the functional form of 
ItiO). The central idea for this ansatz is that it is easier to find good trial 
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wavefunctions for Ill/o> than directly for III/). A well-defined procedure has been 
developed, the renormalized mean field theory, to find a functional form of Ill/,,). In 
the next two sections we briefly describe this procedure. 

2. Gutzwiller Approximative Formulas 

Gutzwiller calculated [32] the expectation value of the kinetic energy operator in 
1Gutz) in an approximate analytic way, deriving a formula now known as the 
Gutzwiller approximate formula (GAF): 

(10) 
l-n 

gr= 1 -n/2’ 

Here I$) = P, =0 ltiO) and T is the full kinetic energy operator of Eq. 1. Although 
Gutzwiller derived this formula initially for I$) = IGutz), Eq. (10) is now thought 
to bea good approximation formula for general I$). This formula can be derived in 
two ways, by simply counting the possibilities of hopping in I$) and ItiO), respec- 
tively [33], and as a two-site approximation in a systematic cluster expansion 
[34]. Furthermore this formula is consistent with a slave boson theory [35], which 
interpolates between large and small U. Note that the expectation value of the 
kinetic energy in I$) vanishes for n = 1, since the hopping of the holes is the only 
kinetic process allowed in the projected subspace. 

By the same means as that for the kinetic energy, a similar formula can be 
derived [36] for the n.n. spin-spin correlation: 

1 
R,‘(l -n/2)2’ 

(11) 

One can test these formulas by calculating both sides of Eqs. (10) and (11) 
numerically. One finds [lo, 361 that they work very well qualitatively; i.e., although 
the left and the right hand sides of Eqs. (10) and (11) might differ by about 10 %, 
they track each other very nicely as a function of possible parameters in I+) and 
l$e), respectively [36]. We describe in Section 3 the techniques employed to carry 
out these calculations. This analytic form for g, (Eq. ( 11)) is valid only when 1 tiO) 
has no finite sublattice magnetization. 

3. Renormalized Mean Field Theory 

Here we will shortly describe the principles of renormalized mean field theory. 
The idea is to derive an explicit expression for I$,,) by using first the GAF formulas 
and then a mean field approximation for the renormalized Hamiltonian. 
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In a variational approach, one minimizes the expectation value of the total 
energy. Only in one dim [37, 381 can this expectation value be calculated without 
any approximations. In higher dim this must be done numerically. The idea of the 
renormalized mean field theory is to use the GAF formulas (Eqs. (10) and (11)) to 
calculate analytically the qualitative form of the best wavefunction. The numerical 
energy minimization is then a test and a fine tuning of these calculations. This 
procedure works only because the GAF formulas work qualitatively so well [36]. 

We rewrite H,, as T+ H, where H, = JC,, j) Si. S, (see Eq. (5)). This form is 
valid near half-filled to terms of order J( 1 -n). The total energy is then given by 

(12) 

where ]$)=P,=,]$,) and g,and g,aregiven by Eqs.(lO)and (11). g,T+g,H, 
is called the renormalized Hamiltonian. The right hand side of Eq. (12) is the expec- 
tation value of the renormalized Hamiltonian in ]1+5~). Since ]tiO) is just a standard 
fermionic wavefunction without any restrictions, one can use standard Hartree- 
Fock decoupling schemes for H,. By this mean field approximation, the 
minimization of the right hand side of Eq. (12) can be done analytically [36]. In 
one dimension, the solution for I$,,) is just a filled Fermi sea. 

4. Projected Wavefunctions 

In two dimensions, depending on the decoupling schemes, two types of 
wavefunctions are obtained as solutions of the renormalized mean field theory. The 
choice of decoupling schemes depends on the type of order parameter introduced. 
The first is a projected Hartree-Fock spin density wave, ISDW). This solution is 
obtained by assuming ( niTr - n,., ) as order parameter in Eq. (12). Here i and j are 
n.n. sites, 

[SOW) = P,=, k~FF~rrao(~kC;~+sign(cr)8kc;+n.~) 1’) (13) 

with 

(14) 

where &k is given by Eq. (3) and Q = ( n, II) for a commensurate SDW. A,, is the 
antiferromagnetic order parameter. 
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Yokoyama and Shiba [39] have studied this wavefunction extensively. They find 
that it has long range antiferromagnetic order and that it yields a good description 
of the ground state of H,, in the regime with long range antiferromagnetic order 
(see Fig. 4), as far as the properties of this state are known [27-291. The properties 
of ISDW) are discussed in Section 4. 

The second type of wavefunction that one can derive from renormalized mean 
field theory is a projected BCS wavefunction, which we will define as our RVB trial 
wavefunction. This solution is obtained by assuming (ci:,ci:_, ) as order parameter 
in Eq. (12). Here i and j are n.n. sites, 

IRVB) = P,=, IBCS) 

= pLl=cl n (Uk + VkC&C’k,J IO>. 
k 

The parametrization of uk and uk is given by the usual BCS-form: 

‘k - A(k) 
G-(k+Jm=:ak 
<k = -2(cos(k,) + cos(k,)) - ,d. 

(15) 

(16) 

Here p is a dimensionless parameter. At half filling p = 0. We discuss the meaning of 
p for n < 1 further below. It is usual [ 1] to define r&k =: ak as above, Since this 
quantity will be used for the actual evaluation of IRVB), as we explain in Section 3. 
For A(k) different parametrizations are possible [40]: 

A(k) = A, s-wave 

A(k) = A(cos(k,) - cos(k,.)), d-wave 

A(k) = A(cos(k,) + cos(k,)) - p, ext. s-wave. 

(17) 

Here A is the final variational parameter. In contrast to usual weak coupling BCS, 
the definitions for uk, and the A(k) are valid in the whole Brillouin zone and not 
only in a region near the Fermi surface. 

It is important to note that these definitions are also valid in the half-filled case. 
No superconductivity can arise in a state with only singly occupied sites and n = 1. 
Hence A is not the true superconducting order parameter, which will be [40] 
proportional to (1 - n)A, as we discuss in Section 4. 

From Eq. (10) we see that at half tilling t drops out of Eq. (12) for the total 
energy, since the kinetic energy is renormalized by (1 -n). The only energy scale 
that survives renormalization for n = 1 is J. It would therefore be completely 
arbitrary to give A in units of t, which is a dummy variable and drops out of 
Eq. (16). It is more appropriate to think of A being dimensionless, indicating the 
fraction of the Brillouin zone involved in the pairing. If A N 1, then nkuk differs from 
zero in the whole Brillouin zone, whereas ukuk + 0, for A + 0. In the latter case the 
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fraction of the Brillouin zone involved in the pairing goes to zero. The tL that 
appears in the definition of uL and uL in Eq. (16) has the same functional form as 
the kinetic energy (Eq. (3)). H, is derived by second order perturbation in TmiX (see 
Section 1.2) and is therefore, roughly speaking, proportional to the square of the 
kinetic energy. In renormalized mean field theory this product is then factored 
again. 

Off half filling, the kinetic energy contributes to the total energy with a term 
proportional to (1 - n)t. In renormalized mean field theory [36], this adds to lk 
the term - (1 - n)( t/J)(cos(k,) + cos(k,)) and therefore changes the optimal value 
of A. These changes do not introduce new qualitative features in the para- 
metrization of uk and uL. In this sense, spin correlations and kinetic process do not 
disturb each other in IRVB) as trial wavefunction for Hea, but harmonize [41]. 

At half filling, all particle fluctuations in IRVB) are projected out; i.e., no states 
with less than one particle per site are present in JRVB) when n = 1. That is 
because otherwise one could not have a mean value of one particle per site, since 
the projection operator projects out all states with more than one particle per site. 

As defined by Eq. (16), p is just a dimensionless variational parameter. One 
possible use of .u is to fix the particle number in IRVB), as done by Yokoyama and 
Shiba [42]. In this case ,U takes large positive values near half filling and 
approaches the Fermi energy of the noninteracting system at large doping. In our 
calculations, we set pl equal to the Fermi energy at all fillings and work with a 
wavefunction which has fixed particle number N. This wavefunction is just the 
projection of IRVB) onto the subspace with particle number N: IN) = P, IRVB), 
where P, is the corresponding projection operator. In the thermodynamic limit, it 
is equivalent, to work with (RVB) or with IN), if N corresponds to the mean num- 
ber of particles in IRVB). For computational reasons, we will work mainly with 
IN). For the rest of this paper, we will denote by JRVB) both IN) and the original 
IRVB). Whenever necessary, we will explicitly state whether this wavefunction is 
supposed to have a fixed number of particles or not. 

We remark that other authors take different forms for lL in Eq. (16) [41,43345]. 
One must therefore be very careful about terminology. What we call “d-wave” is at 
half tilling [36] identical to what Kotliar 143 3 calls “s + id-wave” and what Allleck 
and Marston [45] call “flux state.” This is due to the redundancy in a fermion 
representation of spin wavefunctions [36]. 

5. Why Projected Wavefunctions? 

We are now in the position to recapitulate the two central steps in the approach 
by projected wavefunctions. 

1. Transformation of the Hilbert space as described in Section 1.2. This trans- 
formation eliminates processes which change the total number of doubly occupied 
sites. Since we are interested only in low energy processes, we approximate the 
transformed Hamiltonian, Hea, by Eq. (5). This corresponds to an expansion in 
t/U. This Hamiltonian has matrix elements only in the subspace with no doubly 
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occupied sites. In this way we assure that we describe a Mott insulating state in the 
half-filled case. Without this transformation, it is difficult to describe a Mott 
insulator variationally (see Section 1.4). 

2. As a variational ansatz for the trial wavefunction we take I+) = P,=, Itjo) 
(see Eq. (7)). This ansatz has two merits. A direct variational ansatz for \I,$ ) is dif- 
ficult. A straightforward and physically transparent procedure has been developed 
to find a analytical form for ItiO). This is achieved by the renormalized renor- 
malized mean field theory (see Section 2.4). The wavefunction, I$), derived in this 
way, has only a few variational parameters. This property is very important for the 
numerical evaluation. The second merit of this ansatz is the fermion representation. 
I$) is explicitly written in terms of fermion creation operators. No problem with 
antisymmetrization arises and the properties of projected wavefunctions can be 
calculated with the same ease for both finite doping and the half-filled case. 

SECTION 3. METHODS 

1. Monte Carlo Procedure 

We now outline the method we use to evaluate numerically the projected 
wavefunctions. Only in one dimension [37, 381 we know the properties of 
the Gutzwiller wavefunction analytically. In higher dimensions and for general 
projected wavefunctions, we must resort to numerical methods. 

Our problem is to evaluate expectation values of an operator 0 in I$) for a finite 
system: 

(18) 

Here, a, B are states in which the electron spins have definite spatial configurations. 
In other words, a is a label specifying the two disjoint sets {R, ... R+} and 
{R; . . . Rh,} which determines the positions of the up- and down-spin electrons, 
respectively. In terms of fermion creation operators, 

The specific form of (a ( $) depends on I+) (see Sections 3.2 and 3.3). 
Horsch and Kaplan [46] recognized that this sort of expectation value is suscep- 

tible to a Monte Carlo (MC) evaluation. They applied it to the half-filled case and 
Shiba [47] has implemented this method for the two band infinite U Gutzwiller 
wavefunction for the periodic Anderson model. 
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We rewrite Eq. (18) as 

with 

(19) 

(20) 

It follows that 

Therefore, (0 ) can be evaluated by a random walk through configuration space 
with weight p(a). The MC weighting factor T(a + a’) for going from one con- 
figuration CI to another configuration ~1’ can be chosen as 

T(cr + cd) = 
i 

1, P(d > P(B) 
P(a’YP(~), Aa’) <P(N). 

(22) 

The configuration CI’ is accepted with probability T(a + ~1’). 
We will use a’, which are generated from ct by the interchange of two electrons 

with opposite spin or by the motion of an electron to an empty site. By this choice 
of a’ the time needed to compute T(cr + cl’) is cut down drastically with respect to a 
random choice of LY’ (see Section 3.4). 

It is possible to restrict the possible N’ to those configurations, which can be 
generated out of a by the interchange of n.n. electrons of opposite spins only 
[46] or by the motion of an electron to a n.n. empty site. In this case, the MC 
weighting factors are multiplied by a configurational weighting factor, which is 
given by the ratio of possible new configurations in a’ and a, respectively [46]. The 
so-constructed random walks are still ergodic, but the acceptance rate, i.e., the 
average of T(a + a’), is enhanced. This is advantageous, since the computation of 
T(a + a’) is expensive. 

By this procedure, a series of conligurations {ai, a2, . . . . aNuc} is generated, where 
N MC is the total number of MC steps. (0 ) is given by 

(23) 
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Since the txi)s are not statistically independent, it is possible to replace the sum in 
Eq. (23) by a sum over a subset {&ii) of {cri}, without losing accuracy. For example, 
one can make a measurement f(Zj) only after every Lth MC-updating, where L is 
the total number of lattice sites. This may accelerate the calculation, whenever the 
computation of f(a) is time expensive. In this case, the expectation value for 0 is 
given by (0 ) = fi&- xi f(cj), where mMvlc is the number of measurements. It is not 
advantageous to perform measurements at still larger intervals, since the {ijii) are 
already nearly statistically independent, when we take for Ej every Lth ai. 

The amount of computation time needed to calculate f(a) depends mainly on the 
number of spin configurations p with nonvanishing matrix elements (81 0 la) (see 
Eq. (20)). For operators 0 diagonal in a, e.g., the z-component of the spin-spin 
interaction energy, C<i,j>SfS;, there is only one /I = a. 

For the kinetic energy operator, there are about z. N, configurations /I, where z 
is the number of n.n. sites and N,, the number of empty sites. For the xy-component 
of the spin-spin interaction energy, namely Cci, j> f(S,+ S,: + S; S,? ), the number of 
configurations /I is of the order of L. For the calculation of this quantity, it is 
therefore important to use only the Ej for the expectation value in Eq. (23) and not 
each ai. 

The total number of MC steps is normally much lower than the total number of 
spin configurations. It is therefore necessary to estimate the accuracy of (0) as 
calculated by Eq. (23). This is done by doing N, independent MC runs (N, N lo), 
with different random initial spin configurations. In this way, one obtains N, 
independent (O),, where each (0 )[ is the average of a large number of 
measurements f(Zj). The expectation value of 0 in I$) is then defined by the 
average 

o=; z (O),. 
ri=1 

The accuracy is then given by the standard deviation 

,g, t(0),- <w*. (25) 

The measurement of the error bars by Eq. (25) is very reliable in the following 
sense: Data from repeated calculations for the same system with different random 
initial spin configurations scatter with a distribution given by Eq. (25). Further, we 
do not expect corrections due to systematic errors. No source of possible systematic 
errors is known for this type of calculation. The estimate of the accuracy by 
Eq. (25) is valid for a definite lattice size and particle number. The estimation of 
accuracy of results extrapolated to the thermodynamic limit is more complicated 
and is discussed in Section 3.5. 
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2. Amplitudes for the Spin Density Wave 

The key quantity for the MC calculations described in the previous section, are 
the amplitudes of the trial wavefunction in a given spin configuration: (a ( II/ ). It is 
necessary to know their form and an efficient way to calculate them. 

For an equal number of up- and down-spins, N,, (c1I+ ) is the determinant of an 
N, x N, matrix A,. More generally, for an arbitrary number of down- and up-spins 
(NJ, Nr) and for I$)= IGutz) or I$)= (SOW), (a[+) is the product of the 
determinant of an N, x N, matrix (A,,L) and the determinant of an N, x N, matrix 
(A,T). The (j, I)th element of these matrices is given by (see Eq. (13) 
ii,, exp(ikj . R,,) + sign(o) &, exp(i(k + Q) . RLc). Here { kj} is the set of k-vectors 
which form the 0 Fermi sea and {R,,,} denotes the position of the o-spins. For the 
Gutzwiller state, 6, = 1 and 6, = 0. 

For an equal number of down- and up-spins, N, = N, = N/2, the two deter- 
minants can be combined into a determinant of a single matrix A,, by mul- 
tiplication of the corresponding matrices. We can see this in the following way: We 
assume iik=zLL, i&=0”_, and define 

a,(Rj,L) = fik exp(ik .Rj.l) - I?~ exp(i(k + Q) .RjV,) 

ak(R,.t)=skexp(ik.R,r)+o”kexp(i(k+Q).R,,t) 

a(Rj.1, R,,r)= C ak(R,T) a-dR,,i). 
k E Fermi sea 

(26) 

Because of the cross terms, N iik o’k, a(Rj., , R,,r) is not a function of r = Rj,l - R,t 
alone. With the help of these definitions, we rewrite Eq. (13) as 

c ak(R,,,)a-k(R;,I)C,+,,,.,C~, ,_, 10) ISDW) =P,=, n 1 .,, ,,t.. 
k E Fermi sea R,. 1, RI. t 

N/2 
= p,=, c a(Rj.,3 Wc&t,tc~,,,~ IO) 

4.1. RLT > 

=c (alSDW) la). (27) 
I 

This equality would be true also without the projection operator P,=,. The 
amplitude, (a ( SDW ), is given [40,48] by the determinant of A,, which has the 
form 

a(R,,,, R2.t) ... 
4%Ly RI,T) 

. . 

a&",, 9 Rz.T) ... 

(28) 
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To derive this, we must expand Eq. (27) and gather all terms which contribute to 
the same spin configuration c(. The number and functional form of these terms are 
obviously the same as those for IA, 1. Then we must order these terms in two steps: 
First we anticommute all up-spin creation operators to the left. By this we do not 
change the relative sign of the different terms. Second, we order the up- and down- 
spin creation operators separately, but in the same way for all terms. Their relative 
sign is then determined by the fermion anticommutation rules. These anticom- 
mutation rules are obviously reproduced by the determinal form. 

3. Amplitudes for the Resonating Valence Bond State 

The amplitudes (CI 1 RVB) can be written in the form of Eq. (28), with a different 
form for a(Rj,,, R,.t). To see this, we follow Anderson [l] and define a(r) as the 
Fourier transform of ak = u,Juk (see Eq. (16)). Here r = Rj.l - R,,t, 

a(r) = C ak cos(k .r). 
k 

(29) 

This form is valid, if ak = a _ k. 
In the k-summation of Eq. (29), the term k = 0 is not well defined for the d-wave 

(see Eq. (17)), since akCo is a fraction where both the numerator and the 
denominator are zero. From numerical calculations we have found that ak =0 must 
be large, in order to have a good spin-spin interaction energy. This is confirmed by 
exact diagonalization of small clusters [49], which give the result that the best 
RVB-state at half filling is the d-wave with ak = 0 = co. This means that the k = 0 
state is occupied by both a down- and an up-spin electron. In our calculations, we 
have generally taken ak =0 = ,,&. This form for at =0 yields the correct limiting 
behaviour for large systems, but for a small number of sites the state so defined is 
high in energy. The limiting value for a, =O for the lowest d-wave RVB state for 
L = 10 is much larger. 

The RVB wavefunction, as defined by Eq. (15), is a superposition of states with 
different particle numbers, except at half filling (see Section 2.4). Yokoyama and 
Shiba [42] have developed a method especially appropriate to evaluate numerically 
this wavefunction. 

Here we will concentrate on the projection of (RVB) on the subspace with fixed 
number of particles N= 2. N, : IN) = P, IRVB) (see Section 2.4). With the use of 
Eq. (29), we write [1] IN) as 

lN)=P,P,=,n (u,+u,c&ct,,l) 10) 
k 

N/2 
=p,=, 1 4Rj,l-R,,f)cL ,.,, rcii,, 1 . 

> 
10). 

R,,I,R/.I 

As for the case of the SDW, (u I N) is a determinant of an N, x N, matrix (see 
Eq. (26)) with elements a(Rj,l -R,,,) where a(dR) is given by Eq. (29). Note that 
translation invariance is not broken, in contrast to the SDW-case. 
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4. Calculation of the Determinants 

In the preceding sections we showed that the amplitudes of projected 
wavefunctions have the form of N/2 x N/2 determinants. In the MC process for the 
calculation of (0 >, the whole series IA,, 1, IA,, 1, . . . . IAaNMc I must be calculated. 
Two problems arise: First it is necessary to calculate determinants, or the ration of 
the determinants in an efficient way. Second, for nondiagonal operators 0, one 
must keep track of the relative sign of the determinants. 

The second issue can be handled in the following way: The initial ordering of the 
fermion creation operators is chosen randomly: la) = C& c&, . ..~i~.,,cR+~,, ... 

c:~,.~ IO>. Then <al@> = L&l, w h ere A, is given by Eq. (28). Let us consider now 
(6 ) II/ ), where d differs from u only by the motion of the second up-spin to a new 
site: loi) = c& c& , . . c&?, , c& I . . . c& . 1 IO). Such amplitudes are needed for the 
calculation of the expectation value “elf the kinetic energy; the matrix element 
(@I T la) does not vanish. The new amplitude is given now by the determinant of 
A,, which differs from A, only by the substitution of R, by I?, in the second 
column. For this to be true, one must express 0 in terms of fermion creation 
operators and to order them in a way that is consistent with the ordering described 
above. For the kinetic energy, this is naturally the case. The xy-component of the 
spin-spin interaction becomes S+ . S,: = c;‘? cj, 1 c,?~ c,, t = - c,+~ c,, t c,+~ ci, 1. In this case, 
both a column and a row in Eq. (28) are’replackd as described above, for the new 
amplitude. 

The key quantity for the MC evaluation of the projected wavefunctions is the 
ratio of two determinants, IA,,I/IA,I, where the two spin configurations a and a’ 
differ by the interchange of two electrons with opposite spin, or by the interchange 
of an electron and an empty site (see Eqs. (20), (22), and (28)). 

The number of computation steps necessary to compute a single determinant of 
an N, x N, matrix is proportional to N:. For the above problem, a more efficient 
algorithm exists, which involves only - Nz computation steps. This algorithm was 
first introduced by Ceperly et al. [SO] for the MC evaluation of fermionic trial 
wavefunctions. 

The trick is to store not only the matrix A, but also its inverse, A;‘. In each MC 
step, whenever a new configuration CI’ is accepted, not only A, is updated but also 
A; ‘. For this, only - Nz computation steps are needed. The same number of com- 
putation steps is also needed to calculate the ratio of he two determinants, by using 
the inverse of one of them (IA,,I/IA,I = IA,,A;‘I). This procedure works only 
because a’ is chosen to differ from a only by the interchange of two electrons with 
opposite spins or by the interchange of an electron and an empty site. In this case 
A, and A,, differ only by one row and one column. 

In one dimension, it is possible to calculate the ratio of determinants in a still 
more efficient way, for the projected Fermi sea. In this case, the determinants have 
the form of a Vandermonde determinant [lo], which can be factorized. The total 
number of steps to calculate the ratio of two determinants is then only proportional 
to N,. 
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5. Extrapolation to the Thermodynamic Limit 

A correct extrapolation to the thermodynamic limit is essential in order to 
describe the properties of the wavefunctions reliably. One is faced with similar 
problems for the results obtained by exact diagonalization of H,, for small clusters. 
In this case, the extrapolation can be done only at half filling. To see this, just note 
that 10% doping means one hole in 10 sites and two holes in a 20-site system. The 
later diagonalization problem is beyond the computational power of present com- 
puter generations. 

In order to obtain a smooth extrapolation of the data to the thermodynamic 
limit, we use lattices with a total number of sites [27, 511 L = (2n + 1)’ + 1 = 
10,26, 50, 82, 122, 170, 226, . . . and periodic boundary conditions (n is an integer). In 
Fig. 5 the case L = 26 is illustrated. 

This set of lattices has the property that at half filling the projected Fermi sea is 
nondegenerate. All shells of k-vectors are completely filled or empty. At finite 
doping, this is the case if we use only hole concentrations, where the total number 
of holes is a multiple of eight. This property assures a smooth extrapolation to the 
thermodynamic limit [Sl]. For other kinds of lattices, the Fermi surface is not 
uniquely defined. Several nonoccupied k-states lie on the Fermi surface. As a 
consequence, the behaviour of the projected wavefunctions is not monotonic as a 
function of L. Oscillations in the expectation value of the energy occur. 
Extrapolation to the thermodynamic limit is therefore more difficult. 

In addition, these lattices have the convenient property that only two k-vectors 
lie on the diagonals, namely (0,O) and (n, rr). This is convenient for the calculation 
of the d-wave 1RVB ), for which a(k) is not well defined on the diagonals (see 
Section 3.3). 
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FIG. 5. Illustration of the type of lattices used for the Monte Carlo calculations for 26 sites. (Left) 
The lattice in real space. The sites are given by the bold dots inside the square. The arrows indicate the 
periodic boundary conditions. (Right) The lattice in momentum space. The dots are the values of the 
k-vectors. Note that the Fermi sea at half tilling, given by the dots inside the dashed square, contains 13 
k-states, the number of down- or up-spins. Note that the four k-vectors (+x, f  n) are equivalent. 
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An alternative set of lattices, which ensures the same properties as described 
above, has been employed by Yokoyama and Shiba [42]. These are 4 x 4, 6 x 6, . . . 
lattices, with periodic and antiperiodic boundary conditions in x- and y-directions, 
respectively. 

Obviously, an extrapolation with a constant density of holes cannot be done, 
except for n =‘ 1. We therefore prefer to work with a fixed number of holes and to 
renormalize the measured quantity by a function of (1 -n). Within this approach, 
the extrapolation L -+ cc implies (1 -n) + 0. In this limit, the calculations of the 
properties of the projected wavefunctions are most reliable. 

For a reliable extrapolation of the data to the thermodynamic limit, a knowledge 
of the qualitative behaviour of the finite size corrections on l/L is necessary. This is 
not known for the projected wavefunctions. One must therefore extract this 
behaviour empirically from a plot of the data. By this procedure one obtains small 
error bars for the extrapolated results. But if the qualitative extrapolation is not 
correct, these error bars are meaningless. 

On the other hand, the data increase or decrease often monotonically as a 
function of L, especially when we use lattices of the type described above. An alter- 
native approach for the estimate of the expectation values in the thermodynamic 
limit is then possible. One increases the lattice size up to the point where the 
difference between the results of the two largest lattices is smaller than the error 
bars (given by Eq. (25)). A reliable estimate for the result in the thermodynamic 
limit is then just the expectation value and accuracy of the largest calculated lattice. 
By this procedure one assures that the finite size corrections are less than the error 
bars, although these are generally somewhat larger than those obtained by the first 
method. 

In our calculation, we have generally employed the second method. When 
presenting the results of our calculations in Section 4, we explicitly state whenever 
the first method was used. 

SECTION 4. RESULTS 

We now come to the presentation and discussion of results obtained by 
evaluation of the projected wavefunctions by the variational Monte Carlo method. 

The projected wavefunction lowest in energy for H,, in one dimension is the 
projected Fermi sea [36]. As a trial wavefunction for the Hubbard model, the more 
general wavefunction as defined by Eq. (9) has been studied by the MC technique 
[52, 533 (see the discussion following Eq. (9)). In one dimension, the properties of 
this wavefunction have been calculated exactly [37, 381, by the resummation of all 
diagrams in a perturbative expansion. 

Recently, a variational wavefunction first introduced by Marshall [54] was 
reexamined by a variational MC technique [55, 56). Since this wavefunction 
exhibits a finite staggered magnetization even in one dimension [SS], the physical 
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relevance of the Marshall wavefunction for this case is not clear. We therefore 
postpone discussion of them to Section 4.3. 

For the one-dimensional case, another trial wavefunction, based on triplet 
excitations of a valence bond state, has been proposed recently [57] in the context 
of high T, superconductivity. 

1. One Dimension-Half Filling 

We now turn to discussion of the Gutzwiller wavefunction in one dimension, for 
the half-filled case. We will discuss only the properties of [Gutz). Both the IRVB) 
and the (SDW) are higher in energy [36, 391. This means that the additional 
variational degrees of freedom, present in these two kinds of wavefunctions, are 
physically not relevant in one dimension. Within the framework of projected 
wavefunctions, IGutz) is therefore stable against the introduction of both 
antiferromagnetic and superconducting correlations. 

A consensus has been reached that IGutz ) is an excellent trial wavefunction for 
the ground state of the one-dim. Heisenberg model. The energy for IGutz) differs 
only by 0.2% from the exact ground state energy [lo, 381. Furthermore [38,46], 
the spin-spin correlations fall off with the distance j like ( - l)j/j, as they do for the 
exact solution [SS]. Clearly, no long range antiferromagnetic order is present, since 
it is quenched by the low dimensionality [12]. 

The Gutzwiller wavefunction is intimately related with short range 
antiferromagnetism in one dimension. This is shown by the work of Shastry [S9] 
and Haldane [60], who showed that [Gutz) is the exact ground state of an 
antiferromagnetic Heisenberg chain, with couplings, that fall off with the distance j 
as l/j’. 

It is possible to describe excited states by creating particle-hole excitation in 
Itic,). The exact relation between the projection of these excited states of ItiO) and 
the excitation of Hen is unclear, since the set of all projected wavefunctions is over- 
complete in the projected subspace. The number of states in the full Hilbert space is 
(“,’ )( 7~ ), while the number of states in the projected space, (2) at half filling, is 
much lower. Every state in the original Hilbert space can be projected; the number 
of projected wavefunctions is therefore vastly overcomplete. Attempts have been 
made to relate the lowest projected particle-hole excitations of 11(10) at half filling 
[61] with the Des Cloiseaux-Pearson [62] spectrum. 

Within the set of projected wavefunctions having a fixed magnetisation m = 
(Nt - NI)/(N, + N, ), the state lowest in energy is given by 

IGWm))=P,=, n clt n cc, IO>, (31) 
Ikl4kF.T lkl G kF.1 

where k,, = rr(N,- 1)/L. N, must be odd for IGutz(m)) to be well defined. 
Using this trial wavefunction, the spin susceptibility can be calculated [lo]. It is 

found to be close to the susceptibility of the exact solution [63]. The results are 
given in Table I. 
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TABLE I 

Results for One Dimension 

(St .s,> x CT) 

Gutzwiller -0.442 118 [38] 0.058 k 0.008 [IO] - 1.887 k 0.05 / 
Exact for H,, -0.443 147 1111 0.0506 [63] -2.0 f[18] 

Note. The first and second columns show for half tilling the nearest-neighbor spin-spin correlation 
energy in units of J = 4r’/U and the spin susceptibility in units of 2g’&/J, respectively. The third column 
shows the kinetic energy per hole, in the limit of vanishing hole density. The tirst row shows the results 
of the above quantities for the projected Fermi sea, the Gutzwiller wavefunction, while the second row 
shows the values for the exact ground state of H,,. The numbers in brackets indicate the reference from 
which the entry is taken. 

2. Nearly Localized Fermi Liquid 

At finite doping, we will consider the case when the density f holes is small com- 
pared with unity, but large enough so that the excitations can be described by 
quasi-particle excitations of a Fermi liquid. 

This is the case when t/U @ 2( 1 - n), as discussed in Section 1.5. In this limit, only 
the projected kinetic energy operator survives in the expression for H,, in Eq. (5). 
H,, describes then a “nearly localized Fermi liquid” (NLFL). Note that within this 
one band model, we will not describe a NLFL in the limit (1 -n) + 0, at constant 
ratio t/U, since in this limit the spin-wave excitations dominate. 

The contribution of the kinetic energy to the ground state energy is shown in 
Table I. We see that the value for the Gutzwiller wavefunction is quite close to that 
for the exact ground state of H,,. For the exact ground state [18], the bandwidth 
of the holes, for low hole concentrations, is the bare bandwidth 4t, as it is for 
infinite U for all hole concentrations [IO]. This is particular to one dimension, 
since the fermions cannot cross. 

Although the n.n. spin-spin correlations do not contribute substantially to the 
total ground state energy of H,, in this parameter region, they are very strong. 
They are therefore not dynamical in nature, i.e., due to the spin interaction term in 
the Hamiltonian, but a consequence of the strong on-site Coulomb repulsion. The 
minimization of the kinetic energy of the holes and the exclusion of doubly 
occupied sites enforce the spin-spin correlations [lo]. 

The contribution of the spin-spin correlations to the total ground state energy is 
not large, for t/U < 2( 1 - n), but essential in two and three dimensions to stabilize 
the NLFL against the ferromagnetic instability (see Section 1.3). The ferromagnetic 
phase is stable for t/U + 0 in two and three dimensions. In one dim all spin 
configurations are degenerate, for U = co, since the fermions cannot cross [IO]. It is 
not correct to deduce from these facts that the NLFL is nearly ferromagnetic. 
In our approach by projected wavefunctions, the NLFL is almost localized and 
therefore nearly antiferromagnetic. The transition to the ferromagnetic phase, as a 
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functions of t/U, at constant (1 -n), should be of first order. This is because the 
strong antiferromagnetic short ranged spin-spin correlations are present wherever 
the NLFL is stable, since they are not consequence of the dynamics, but of the 
strong on-site Coulomb repulsion. 

It is important to note that the strong short ranged spin-spin correlations are 
present only at low temperatures [lo]. The temperature scale at which they 
disappear is the energy scale of the excitations in I$), which is N (1 - n)t. This 
is normally expressed by saying that the Fermi temperature is renormalized by 
(1 -n): T: = (1 -n) TF. This energy renormalization is valid only in the Fermi 
liquid regime, i.e., for IGutz), and not for a more general projected wavefunction 
like 1SDW ) or IRVB). We will now shortly discuss the mechanism for this energy 
renormalization for the Fermi liquid wavefunction. 

We must be careful about the term “Fermi liquid” in one dimension. Quasi-par- 
ticles are not defined, since their lifetime remains constant in the limit of vanishing 
temperature. In one dim we examine the energy of the particle-hole excitations. We 
expect that the generalization of )Gutz) and of the excited states to three dim will 
show the same qualitative behaviour. The excitations correspond then to well- 
defined quasi-particles. 

For t/U @ 2( 1 - n), only the projected kinetic energy survives in the expression 
for H,, as described by Eq. (5). The spin degrees of freedom are disordered by the 
motion of the holes, which have a bandwidth -t. In a system of interacting 
fermions, the volume of the Fermi surface is unchanged [64] with respect to the 
noninteracting case, if the system can still be described by Fermi liquid theory. The 
excitations are therefore quasi-particles, in a one to one correspondence with the 
excitations of the noninteracting system. These quasi-particles have an enhanced 
effective mass m* = m/( 1 -n). The disordering of the spin degree of freedom gives 
rise to an entropy of R. ln(2) at a temperature scale of T,?, which yields 
consequently a very large specific heat [65], which, in three dim, would be linear in 
temperature. In a one band picture, this physics has been worked out in a 
phenomenological model for the heavy electron systems [66] and for normal liquid 
3He [67]. 

3. Two Dimensions-Other Variational Approaches 

The field of variational approaches to H,, is in rapid development. No final 
review can be given here even for the projected wavefunctions, but very interesting 
results are already available. 

Apart from the projected wavefunctions, two alternative wavefunctions have been 
studied recently in two dimensions at half filling. Both are formulated in terms of 
spin operators and not in terms of fermion creation operators, as the projected 
wavefunctions. Therefore, they are not readily generalized to finite doping. 

The first has been formulated by Marshall [54] an recently reexamined by Huse 
and Elser [SS] and by Horsch and von der Linden [56]. The second ones are 
RVB-type wavefunctions, considered by Liang, Doucot, and Anderson [69] 
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(LDA), which are formulated as a superposition of singlet-bond configurations in 
real space. Both classes of wavefunctions satisfy explicitly Marshall’s criterion [54]. 

This criterion determines the sign of the amplitude of a given spin configuration 
of the ground state of the antiferromagnetic Heisenberg model. This sign is + 1 if an 
even number of u-spins is on one of the two sublattices and - 1 otherwise. It seems 
to be important for a trial wavefunction to satisfy this criterion, in order to have a 
very good energy. 

The Marshall wavefunction yields a very low energy (see Table II) and serves 
therefore as a benchmark for both of the other variational approaches and for 
correct extrapolation of results obtained by exact diagonalization of small clusters 
[27,28]. This wavefunction shows long range antiferromagnetic order, with 
moments ordered in the xy-plane. The ordered moment has w  71% of its classical 
value [SS]. 

The LDA wavefunctions have many more variational degrees of freedom. They 
are able to describe states both with and without long range order. Both types of 
LDA states are found [69] to be very low and very close in energy. The lowest 
energies of LDA and Marshall wavefunctions are about the same. 

4. Two Dimensions-Half Filling 

We turn to the discussion of results for the projected wavefunctions, as they are 
defined in Section 2.4. In one dim, the Fermi liquid wavefunction, IGutz), is the 
lowest projected wavefunction [36, 393. In two dimensions, this is no longer the 

TABLE II 

Results for Two Dimensions 

Gutz 
SDW 
1391 

RVB 
Mar. AFH 

A=O.2 A= 1.0 A = 2.0 1551 1281 

(S,~S,) - 0.261 -0.321 -0.311 -0.318 -0.315 -0.332 -0.334 
* 0.003 *0.001 * 0.002 & 0.002 & 0.002 *0.001 

M 0.0 0.43 0.0 0.0 0.0 0.36 0.32 

(0 -2.65 I -2.54 I -2.64 f  -2.44 I -2.22 I - 
io.03 t kO.03 t +0.05 I kO.05 I ) 0.07 t 

Note. The tirst and second rows show for half ftlling the nearest-neighbor spin-spin correlation 
energy in units of .I = 41*/U and the staggered moment defined by M2 = ((l/L x, E,S,)~>, where E, = &- 1 
on the A and E sublattices, respectively. The third row shows the kinetic energy per hole. The first and 
second columns show the results of the above quantities for the projected Fermi sea, JGutz), and for the 
pojected spin density wave, ISDW ), with an antiferromagnetic order parameter AAF = 0.25. The third, 
fourth, and tifth columns show the values for the projected BCS wavefunction, IRVB), with d-wave 
variational parameters d = 0.2, 1.0, and 2.0, respectively. The sixth column shows the results for the best 
Marshall (Mar.) wavefunction. The last column gives the values obtained by extrapolation of the results 
obtained by exact diagonalization of H,, (AFH) on small clusters. The numbers in brackets indicate the 
reference from which the entry is taken. 

595/189/l-6 
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case. At half filling 1Gutz ) is about 20 % higher in energy than the best JRVB ) or 
/SOW). 

In Table II, the extrapolated values for (Si. Sj) are shown for )Gutz), the best 
I SDW ), and 1 RVB ) states with A = 0.2, 1.0, and 2.0. The renormalized mean field 
theory [36] indicates A = 2.0 as the optimal value, while the MC result gives a 
somewhat lower energy for A = 1.0. Anyhow, the properties of IRVB) are only 
weakly dependent on A in this parameter region. For comparison, the results for 
the best Marshall wavefunction [SS] and those obtained by extrapolation of the 
ground state energy of small clusters to the thermodynamic limit [28] are shown. 

Two points are to be made. First, both the ISDW) and the best d-wave 1RVB) 
gain about 20% in energy with respect to the projected Fermi sea, IGutz). For the 
ISDW) this might be expected, since this state is constructed explicitly in order to 
enhance the antiferromagnetic spin-spin correlations. 

For the d-wave IRVB), this large gain is more surprising. A quantum mechanical 
interference argument can be suggested [68], to give an explanation why it is the 
d-wave which is favourable in energy. Nevertheless a full understanding of the 
physics behind this result is still lacking. 

Second, although both the ISDW ) and the d-wave IRVB) are about 5 % above 
the estimated ground state anergy, they are very close in energy. This is remarkable, 
since their long range behaviours are qualitatively different. The ISDW) has long 
range antiferromagnetic order [36], while the IRVB) has not [40] (see Table II). 
The same subtle balance between states with and without long range order is 
present in the class of LDA-wavefunctions [69]. 

We now discuss results obtained by exact diagonalization of a lo-site cluster 
[49] by Poilblanc. The exact ground state of this type of cluster has a definite spin 
(singlet) and space (r,) symmetry [54]. It is straightforward to show that the 
d-wave 1RVB ) fulfills these symmetry requirements, if a(k = 0) = co (see discussion 
in Section 3.3). The ISDW) on the other hand is not an eigenstate of either sym- 
metry. This different behaviour makes comparison of the 1SDW) and the IRVB) 
on small lattices difficult. A correct extrapolation to the thermodynamic limit is 
therefore essential for reliable results. The lowest RVB-state with real coefficients, 
uL, has d-wave symmetry. Its energy is 2.2% above the exact ground state energy at 
half filling. With complex ak an appreciable lowering of the energy is possible. The 
full significance of these results for the lo-site cluster had not been worked out at 
the time of this writing. 

5. Pairing Instabilities in Two Dimensions 

In the preceding section, we described the results for the projected wavefunctions 
for the half-filled case. We found that the Fermi liquid state is unstable against the 
introduction of d-wave pairing correlations. We point out by the following short 
discussion that this effect can be understood already in a Cooper hole analysis. 
That is, we consider 1 Gutz) for the case of two holes, N = L - 2, and we examine 
whether the two holes have the tendency to form a hole-Cooper pair. 
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On the kind of finite lattice we use, as described in Section 3.5 and illustrated in 
Fig. 5, the projected Fermi sea, )Gutz ), is uniquely defined in the half-filled case by 
the prescription to fill consecutively the k-states with lowest s(k) = -2t(cos(k,) + 
cos(k,)). When we remove two electrons, one with down-spin and one with up-spin, 
this is no longer the case. A o-spin can be removed from four different k-states 
having the same maximal c(k). These are the four outermost k-states within the 
dashed square in Fig. 5. 

By combining the four possibilities for the down- and up-spins, respectively, 16 
different choices for IGutz) are possible, when two holes are present. Out of these 
16 states, only 4 have zero total momentum. These are the states, where a k, t and a 
-k, J electron are removed at the same time. Only these four states are relevant for 
the ground state with two holes. 

The question whether a coherent superposition of these four states might be 
lower in energy than the incoherent superposition has been examined by Gros et al. 
[68]. This question is equivalent to the Cooper problem for holes in the context of 
projected wavefunctions. They found that a superposition with d-wave symmetry is 
favourable, while a superposition with s-wave symmetry is higher in energy than the 
incoherent superposition. 

Similar instability considerations can be made for the ISDW), when two holes 
are present. The same four possibilities of taking out two electrons with opposite 
spin and zero total momentum can be considered. In this case, a lowering of the 
energy by the coherent superposition would indicate coexistence of superconduc- 
tivity and antiferromagnetism. No such tendency was found [68]. 

Gros et al. [68] also discussed whether the hole-Cooper instability of [Gutz) 
could be interpreted by a local hole-hole attraction mechanism. For this purpose, 
they compared the nn. hole-hole correlation function in the incoherent and the 
coherent superpositions, with d-wave symmetry, of the four states. They found no 
enhancement in the latter, within numerical accuracy. They concluded that there 
was no evidence for a local hole-hole attraction. 

This last conclusion must be qualified in view of results for the full d-wave RVB- 
state. In the calculations described above, the S.C. pairing was restricted to the four 
k-states on the saddle points while all other k-states are either empty or occupied 
with probability one. In the full IRVB) states, the whole Brillouin zone is involved 
in the pairing. In the full wavefunction, the holes are bound in real space, as we 
show in the next section. This means that the probability of finding two holes on 
n.n. sites is not only enhanced in a infinite system with respect to the Fermi sea but 
also finite. The null result for the hole-Cooper problem indicates that for the holes 
to bind in IRVB), the whole Brillouin zone must be involved in the pairing of the 
electrons. 

6. Superconducting Quantum Spin Liquid 

Recently [ 701, work was begun to distinguish between a “resonating valence bond” 
(RVB) state and a “quantum spin liquid” (QSL). The notion of a RVB state was 
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introduced originally [71, 721 for the ground state of a frustrated antiferromagnetic 
spin system. This term should therefore be most appropriate for a nonordered spin 
liquid at half filling. 

On the other hand, even a nonfrustrated Fermi system becomes paramagnetic, 
when the doping is large enough (see Section 1.5). In this state the fermionic nature 
of the spin-carrying particles is essential, since it is their motion which destroys the 
long range order. That is what one might call a QSL. Note that at half filling, the 
Fermi character of the spin-carriers is lost, since they cannot move. All physical 
quantities can be expressed in terms of spin operators, like S,?S,:. For the projected 
wavefunction, the situation is special isofar as the trial wavefunction for a QSL 
evolves continuously from the trial wavefunction for a RVB state, just by the 
introduction of holes. The name IRVB) will therefore be kept. 

We now discuss the results for the d-wave IRVB), which is our trial 
wavefunction for a QSL, since it is the lowest [36,40] of the projected 
wavefunctions as defined in Section 2.4. The optimal value for d varies between 0.5 
and 2.0, depending on the doping and the ratio of t/J in Herr. The qualitative 
properties of this state however do not depend crucially on the exact value of A. 

Off half filling, three terms contribute to HeII. For a system with L = 82 sites, 
N,, = 8 holes, and U = 16t, the total energy has been calculated [40]. A minimum 
for A N 0.55 has been found, which is due to the gain in spin correlation energy. The 
kinetic energy instead is reduced with respect to its value at A = 0 (see Table II). 
Note that the kinetic energy for the d-wave IRVB) drops very fast around A N 1.0, 
while (Si . S,) has a broad minimum around the same value of A. 

We now discuss the hole-hole correlation function, which is defined by 

g*=&?;; ((I- nR,1)(1-nR,t)(l-nR+T,1)(1-nR+T,t)), (32) 

where T is a lattice vector and nR,a = c&cR (i. The results are given in Table III, for 
the d-wave IRVB) with A = 2.0. The data shown are obtained by average of 
Eq. (32) over the four T’s, which can be obtained by rotation by n/2. 

In order to give an impression of the accuracy and the computation time needed, 
both are given in Table III. Also shown is the acceptance rate, i.e., the average of 
T(cr + a’) (see Section 3.1). The configurations a and ~1’ differ here by the 
interchange of two n.n. electrons with opposite spin or by the interchange of an 
electron and a n.n. empty site. 

The normalization factor l/( 1 -n)’ in the definition of g-r has the following 
meaning: If the empty sites would be completely uncorrelated, i.e., randomly 
distributed, g, would be identically 1, independent of T. For a finite system, the 
normalization factor is replaced by L( L - 1 )/( NJ N,, - 1)). 

If the holes behaved like weakly interacting fermions, or like bosons with short 
range repulsion, g, would be smaller than 1 for small distances and go to 1 at large 
distances. This behaviour is found for IGutz) [8] (see Fig. 6). For the IRVB ) 
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TABLE III 

Hole-Hole Correlations 

26 50 82 122 170 226 &=I0 p;=o’ 

(03 1) 

(0.2) 
(L2) 
(23 2) 

1.06 1.23 1.48 
+0.01 * 0.02 * 0.03 

1.06 1.22 1.44 
kO.01 kO.01 + 0.02 

0.94 0.85 0.8 1 

0.98 0.99 0.98 
0.97 0.94 0.90 

N,cIL 24 000 24OOtl 12000 
Accept. 0.34 0.26 0.20 

Time (min) 6 23 36 

1.76 2.13 2.42 0.097 0.023 
k 0.06 kO.13 +0.19 

1.65 2.01 2.27 0.086 0.024 
k 0.06 kO.13 +0.15 

0.75 0.71 0.69 o.ooo - 

1.02 1.06 1.11 0.001 - 
0.86 0.79 0.72 o.ooo - 

4800 2400 1200 
0.17 0.15 0.14 
40 49 55 

Note. The first five rows and six columns show gr for systems with eight holes in L = 26, 50, 82, 122, 
170, 226 sites, for the d-wave IRVB) with d=2.0 and T=(O, l), (1, l), (0, 2), (1,2), (2, 2). For 
T = (0, 1 ), (1, 1) the accuracy of the calculation is given; for the other values of T they are roughly the 
same. The seventh and eighth columns show pr, the probabilities of finding two holes in relative 
positions T, obtained by a linear fir of g, versus L. The sixth row gives the number of MC updatings; 
the total number of MC steps (NhlC) where L times as large. The seventh row shows the acceptance rate 
(Accept.) for the same calculation. The total time for the program to run on a Cray 1 -s (of the EPFL 
Lausanne) is given in minutes in the last row. 

wavefunction, the situation is completely different. The holes are found to be 
bound. 

To see this, we define pT to be the probability of finding an pair of holes in a 
state with relative positions +T. With Nh holes, when Nh &L, the number of pairs 
in a state with relative positions +T is at any given moment N,,J+. Then, gT takes 
the value OS(L- l)(Nh- l)-‘p,. 

We have done the calculation with a fixed number of holes; g, should therefore 
increase linearly with L, whenever pT is finite. From Fig. 6 we see that this is the 
case for the d-wave 1 RVB) and T = (0, 1 ), while g(,,,, goes to a constant for the 
Fermi liquid state (A = 0). We conclude, that in JRVB) the holes are bound, but 
not in IGutz). From a linear fit of g,, the value of pr can be extracted. The results 
are given in Table III. 

The results can be understood in the following way: If we consider two holes in 
the thermodynamic limit, then the probability of finding the two holes on n.n. sites 
is 2 . pco.,) - 20 % and on n.n.n. sites 2 I p(,, i) - 19 %. On the other hand, pco.2j and 
pc2,2J vanish, indicating a node of the hole-hole pair wavefunction at these points. 
We find therefore an overall probability of about 40% to find the two holes within 
two to three lattice constants. Note that this probability is reduced to - 10% for 
A = 0.2. 

The interpretation of these results is difficult. In particular, it is not clear whether 
this binding of the holes can be interpretated as due to a local attraction of holes. 
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FIG. 6. The nearest-neighbour hole-hole correlation function go 1), as defined by Eq. (32). The 
calculations were done for a fixed number of eight holes and lattices w’ith a total number of L = 26, 50, 
82, 122, 177, 226 sites. The solid squares give the results for the d-wave IRVB) for A = 2.0 (see 
Table III). The dashed line is a linear tit to the data. The filled circles are the data points for IGutz), the 
projected Fermi sea. Note that the data points for (RVB) increase linearly, indicating bound holes, 
while the data for (Gutz) go to a constant for L -+ co. 

A possible binding of two holes is a background with antiferromagnetic 
correlations, due to the formation of a spin bag with ferromagnetic tendency (see 
the discussion of the Nuguoka effect in Section l.S), has been proposed in the case 
of strong [73] and weak [74] coupling. A similar mechanism of a local hole-hole 
attraction in a three band model for the Cu-0 layer of high TC compounds has 
also been investigated [75,76]. 

In any case, we do not yet understand why the IRVB) wavefunctions, which 
have built in explicitly only superconducting correlations between electrons, yield 
automatically bound empty sites. 

One has two possibilities to numerically investigate whether the JRVB) state is 
really superconducting. One is to directly evaluate the quantity (ci:,c,T,), where 
(i, j) are n.n. sites. This quantity has been proposed as the S.C. order parameter in 
various mean field approaches [36,40,43-45]. It has also been calculated 
numerically [40]. It is found to be different from zero for finite hole concentrations 
and to vanish like (1 -n) as n + 1. 

The second possibility is to calculate directly the “off diagonal long range order” 
(ODLRO). This quantity can be defined for Fermions as [77] 

lim (c’ R,fC;(++T,~CR’+T’,lCR’.t >, 
(R - R’I + 00 

(33) 

where T, T’ = (1, 0), (0, 1). ODLRO means that the quantity defined by Eq. (33) is 
finite in the thermodynamic limit. Yang [77] has shown that a state with ODLRO 
shows flux quantization with a flux quanta of hc/2e. Such a state would therefore be 
superconducting. Physically this means that pairs of electrons can hop coherently 
over infinite distances, i.e., that they are Bose condensed. 
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The direct calculation of this quantity is difficult, since the extrapolation 
IR - R’I + cc is difficult to perform. We have therefore calculated the quantity 

1 
d=(l -n)2 

1 
~R,T~,,,o~,~o~l,c::Tc”t+T.~(il)T) c 

c C,'+Ts,~c,s,T~ (k l)?' . 
R’.T’=(I.O),(O.l) >> 

Here T = (T,, T,), (+ 1) + (+ 1) for s-wave symmetry in (RVB) and (Gutz), and 
( f 1) + ( - 1) for the d-wave IRVB). A finite 4 in the thermodynamic limit implies 
ODLRO, since for L + co only the terms with large separation between R and R’ 
contribute to 4. 

We have calculated 4 for a fixed number of eight holes and varying lattice sizes. 
The results are shown in Fig. 7. We see that 4 vanishes like l/L for the projected 
Fermi sea, IGutz). This is to be expected; no S.C. can be present in a Fermi liquid 
state. For the d-wave IRVB), ODLRO is present in the thermodynamic limit. 4 is 
increasing linearly, because of the normalization factor (1 - n)-2 of the definition. If 
the holes were not bound, 4 would go to a constant for L + co. 

We have therefore proven that the IRVB) wavefunctions are indeed S.C. off half 
filling. This is of course not yet a proof that the ground state of H,, is S.C. for n 4 1. 
In fact, results from quantum Monte Carlo simulations at high temperatures 
[78] challenge these findings. Within this approach by projected wavefunctions, 
a QSL is therefore intrinsically superconducting. This differs from the approach by 

26 50 82 122 170 226 

FIG. 7. The quantity 4 as defined by Eq. (34). The calculations were done for a fixed number of eight 
holes and lattices with a total number of L = 26, 50, 82, 122, 177, 226 sites. The solid squares give the 

results for the d-wave IRVB) for d = 2.0. The solid circles are the data points for (Gutz), the projected 
Fermi sea. A finite 4 in the thermodynamic limit means “ON diagonal long range order” (ODLRO). 
Because of the normalization in the definition, e5 actually increases linearly with L for the d-wave 

projected BCS wavefunction, since the holes are bound in this wavefunction (see Fig. 6). For the 
projected Fermi sea, 4 vanishes like l/L; no superconductivity is present. Since the data points can 
barely be seen on this scale, we give them explicitly for L = 26, 50, and 82: 0.105 rt: 0.019, 0.054 f 0.009, 
and 0.043 + 0.015. 
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Wheatly et al. [79], which regard the QSL only as a background for pair conden- 
sation for Bose holes coupled due to interlayer hopping. 

7. Summary 

We examined the properties of projected wavefunctions in one and two dimen- 
sions. In one dimension we compared the projected Fermi sea with the known exact 
ground state. We have found close qualitative and quantitative agreement. For less 
than one particle per site the projected Fermi sea has Fermi liquid character. We 
conclude that it is therefore possible to describe a nearly localized Fermi liquid by a 
projected Fermi sea. 

In two dimensions, we discussed the projected wavefunctions in view of the inter- 
play of short and long ranged antiferromagnetism. While the latter dominates near 
half filling, a quantum spin liquid is expected to take over at a small but finite hole 
concentration. We calculated the properties of the projected BCS wavefunction with 
d-wave symmetry and found it to be a good candidate of the ground state of a 
quantum spin liquid. This state is superconducting off half filling. We calculated the 
superconducting order parameter and confirmed that it has d-wave symmetry. We 
believe that the results are of importance for an understanding of the Cu-0 super- 
conductors, since neutron scattering data indicate [2] that such a state is indeed 
realized in these compounds. 
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