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We present a new Green's-function approach to charged spin systems which preserves the local
constraints' prohibiting double occupancy. It is a systematic fermionic expansion and yields
I/(2z) as a control parameter for the Heisenberg model. For the t —J model the spin and hole
Green s functions are treated on an equal footing. In the Ising hmit, the Brinkman-Rice approxi-
mation and a bandwidth -J' are recovered for, respectively, the incoherent and coherent hole
motion. A new picture for the coherent hole propagation is obtained in the Heisenberg limit.

The subject of strongly correlated electrons on a lattice
is one of the outstanding problems in condensed-matter
physics. Such systems are characterized by an intrinsic
strong coupling between charge and spin degrees of free-
dom, due to strong on-site Coulomb energies. These prop-
erties are thought to be exempli6ed by the t —J model
[de6ned in Eq. (1)l, an example of a charged spin system.
When no holes (i.e., charges) are present, this tnodel
reduces to the antiferromagnetic Heisenberg model. The
most widely used approximation in this context is the
spin-wave approximation, ' which can be regarded as the
leading term in a 1/S expansion. Qn the other hand, the
only simple treatment for the state with one hole is the
Brinkman-Rice approximation and its generalization to
the Ising case. In this approximation the spins are static
and the hole excitation spectrum is completely incoherent;
i.e., the hole cannot propagate coherently.

One might anticipate that a spin degree of freedom
would permit coherent hole propagation, with spin pro-
cesses cleaning up the string of fiipped spina left behind by
a moving hole. Kane, Lee, and Read were the first to for-
mulate an approach which takes both the spin and charge
degrees of freedom into account by using the spin-wave
approximation for the former and a slave boson formula-
tion for the latter. They found that the hole can propa-
gate coherently with a bandwidth -J, in the limit
J c&J'&& t.

In this Rapid Communication we formulate a general
method to apply standard Green's-function techniques to
charged spin systems by introducing a fermion representa-
tion and perturbing around the mean-6eld Hamiltonian.
The use of a fermion representation allows a uni6ed treat-
ment of the charge and spin degrees of freedom, without,

for example, expansion in 1/S. Most importantly, the
method satisfies order by order the local constraints which
prevent double occupancy. These constraints prohibiting
double occupancy are the essential characteristic of a
strongly correlated system; this approach emphasizes the
itnportance of satisfying them locally. We apply the
method to the t —J model. At half-filling we obtain the
spin-wave approximation in lowest order. Systematic
higher-order corrections to the spin-wave velocity turn out
to take the form of a 1/(2z) expansion (where z is the
number of nearest neighbors). Using these results, we
find that the incoherent hole density of states is dominated
by a pole at the lower band edge even in the Heisenberg
limit, as well as near the Ising limit. With this we are able
to discuss the nature of the coherent states in both limits.

A different Green's-function approach has been
developed for the case J 0 by Ruckenstein and Schmitt-
Rink, using the so-called Hubbard operators. These
operators do not obey simple commutation or anticommu-
tation rules but form an algebra. This property, which is
shared by spin operators, is one reason that Wick's
theorem has up to now not been applicable to general spin
systems (with the constraints locally satis6ed), including
the t —J model in its standard formulation. A second
reason is the nontrivial time dependence of the spin opera-
tors (which do not correspond to free 6eld operators) in an
expansion around the Ising limit. We now reformulate
exactly the t —J Hamiltonian and eliminate both
difficulties.

Let us denote by c;t the creation operator for an elec-
tron with spin o t, ) on the lattice site i The t —. J
Hamiltonian is

W 1 —t — [(I—ct—vc;, )et' (1 —cj? ~I ——)+H.c.]+g [J'S StJs(+J /2)(St+St +S; SJ+)l .
(i,j,a &i,j &

Here (i,j) denotes pairs of nearest-neighbor (nn) sites.
S;. 2 (c ttc; l

—c tie;, l ) is the Ising component of the an-
tiferromagnetic (J',J ~ 0) spin interaction. S;+

cttc; l and S; ctlc; l are the raising and lowering
spin operators. The operators in parentheses in the 6rst
term in (1) (the kinetic energy, with t & 0) are the con-
straints that enforce single occupancy. Doubly occupied

sites (c;ttc;tt ) are assumed to be so high in energy, due to
a strong on-site Coulomb repulsion, that they are out of
the Hilbert space.

In the following we will consider only bipartite lattices,
although the method we will now describe could be imple-
mented for a general kind of lattice. At half-filling (i.e.,
for one particle per site) and J~ 0, the ground state is
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the classical Neel state. We split the Ising part of the
Hamiltonian into a mean-field and an interaction piece:

S;SJ —,
' ( —S;+SJ')+(S;——,

' )(SJ'+ —,
' )+ —,

' . (2)

(a) (b)

Here and in the following i and j denote sites on the A (f )
and 8(]) sublattices, respectively. The first part of (2),
which is the mean-field part of the Ising interaction, has
the Neel state,

as its ground state. We introduce this as the new vacuum
at half-filling, and define a t, b t as creation operators of
quasiparticles and holes with respect to the vacuum:
a; c;~~, b;t c; t on the A sublattice and ajt c~~ ~,
b~~ cj ~

on the 8 sublattice. We neglect the constant in
(2) and obtain the following exact reformulation of H,
in terms of a, b operators:

H, J Hp+Hi+H2+ T,
Ho (eo/2) g (anat+ blab&),

IGA, B

H~ —(J'/4) g (a;ta;+b;tb;)(a/ta~+bjtbj), (3)
(i,j)

H2 (J /2) g (apb;tajtbjt+bjajb;a; ),
&i,j)

T —t g [(a;a;t)b;a~(b~~b~)+(b;tb;)a;tbjt(ajajt)+H. c.] .
(i,j )

Here eo zJ'/2, where z is the number of nn's and the
operators within parentheses in the expression for the ki-
netic energy are the constraints which enforce single occu-
pancy.

By construction, the ground state of the unperturbed
Hamiltonian Ho is the vacuum (eo) 0). Ho is quadratic,
so that in the interaction representation at(t) exp(ieot/
2)at and bt(t) exp(ieot/2)bt. This simple time depen-
dence, and the fact that the a, b operators obey standard
anticommutation rules, establishes Wick's theorem.

Note that no unphysical configurations are created in
any perturbation order, since the ground state has only
singly occupied sites and the perturbations have only ma-
trix elements within the allowed Hilbert space. Thus the
unique feature of this formulation is that the constraints
are satisfied locally, while a Wick's expansion is still pos-
sible. Diagram atically, unphysical configurations are
avoided as long as all diagrams contributing to a given or-
der are taken into account. The perturbation in T is rela-
tively simple, since T involves only the charge degrees of
freedom and does not change the half-filled ground state.

Two kinds of graphical expansions are now possible: (i)
a standard perturbation expansion in H~, H2, and (ii)
since Hp and H~ commute, an exact treatment of H~ is
possible, summing up perturbations to all order in H~. In
this paper we will deal exclusively with the former kind of
expansion; details of the latter will be presented elsewhere.

The zero-temperature tine-ordered Green's functions
are defined as

Ge(t) —i(Te (t)e t(0) & .

In frequency space, the unperturbed single-particle (G, )

FIG. 1. Symbols for the graphical expansion. A single line

represents the on-site Gb (co), a hole line; with a tick mark

G,~ ~(co), the propagator for a doubly occupied site. A double

line represents a flipped spin G,g~(co). (a) H~ has a vertex of
—J'/4 between two nn single lines, and (b) —J' between two

nn double lines. (c) FIz destroys or creates pairs of nn flipped

spins. (d) The kinetic-energy operator propagates a hole to a nn

site, leaving a flipped spin behind. The loop in (d) is the con-
straint which enforces single occupancy.

and hole (Gs) Green's functions are

G "'(co) -G "'(co) -1/(a) —eo/2+ ib)
and the Green's function for a particle-hole pair (a flipped
spin) is G,h (co) 1/(to —eo+ib) Not. e that these are
site diagonal -functions —the unperturbed intersite G s
vanish.

In Fig. 1 the graphical representation of the basic ver-
tices is shown. H~ has a vertex of —J'/4 between two sin-
gle lines and of —J' between two double lines. H2 de-
stroys or creates pairs of nn Aipped spins. The kinetic en-
ergy T propagates a hole to a nn site, leaving a flipped spin
behind. The additional equal-time loop &aat) enforces
single occupancy and can be taken into account by retain-
ing only the allowed hole propagation graphs. The evalu-
ation of diagrams is particularly simple in coordinate
space, since the unperturbed 6's are site diagonal. Not all
higher-order graphs have a simple interpretation in terms
of fIIipped spins.

As a first example, we discuss the spin excitation spec-
trum at half-filling. For this we must consider the propa-
gator for a local spin excitation (a flipped spin). In the
lowest approximation, the fmipped spin propagates within
one sublattice by repetition of the basic step shown in Fig.
l(c). This basic step yields (in one dimension) a self-
energy X;o (J /2) G t, (—ro)(2b;o+b;z+8; —z), with a
similar expression in two dimensions. If the Hipped spin
moves by repeating this step, then Z;p can be viewed as an
e6'ective hopping matrix element in a frequency-
dependent tight-binding approximation, with hops to
nearest-neighbor sites on the same sublattice. The
Green's function for propagation from site 0 to site i be-
comes the random-phase-approximation- (RPA-) like
SUIYl

G;o(to) GoB;o+ GoZ;oGo+ GoX; GoZJoGo+

which when Fourier transformed becomes

[Gk(a))] '-(G't", ) ' —z'y'(J /2)'G"'( —co)

This yields the spin-wave spectrum cok co[1 —(J /J') 'yk] ', where yk cos(k) in one dimension and
[cos(k„)+cos(k~) ]/2 in two dimensions. This is the usual
spin-wave result. '

We have evaluated higher-order corrections to the
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FIG. 2. (a) An order t4 example of the self-retracing paths
which contribute to Gie"'(m). The hole hops away twice and fol-
lows the same path back. In the Heisenberg limit, this can be
viewed as the emission and reabsorption of a spin wave. (b) The
lowest-order graph giving coherent hole motion. The hole hops
two times and the string of reversed spins left behind is swept up
by a vacuum Quctuation. This can be treated as an effective
hopping matrix element for motion within one sublattice. In our
calculation, the single hne Gb (cu) is replaced by Gil"'(co) so
that the propagating object is the dressed Brinkman-Rice-type
hole.

spin-wave velocity for J J'. These corrections appear
to take the form of an expansion in 1/(2z); the lowest-
order correction gives so~ ap[1+ I/(2z)] in the expres-
sion for rpk. This interesting result may explain why the
spin-wave approximation works so well in two dimensions
even for s 2, in our approach corrections are relatively
small, going as 1/(2z) rather than 1/S as, for example,
arises in the usual Holstein-Primakoff expansion. z

Next we consider the properties of a single hole. The
graphs contributing to the hole propagation divide natu-
rally into two distinct sets. The flrst set includes all self-
retracing paths. These give rise to a localized dressed hole
of the type flrst studied by Brinkman and Rice. We will
cail this the incoherent part of the hole spectrum. Sum-
ming up the self-retracing graphs yields a self-energy
correction X'"'(cp) to the on-site hole Green's function.
Physically this self-energy corresponds to the dressing of
the localized hole by a cloud of reversed spins (more accu-

I

rately, strings of spins). We will calculate this self-energy
in the Ising limit J «J' and in the Heisenberg limit
J J'

The second set of graphs allows the dressed, localized
hole to propagate coherently. In these graphs the off-
diagonal term in the spin interaction erases the string
dragged behind a moving hole, allowing it to move to oth-
er sites on the same sublattice, giving rise to a coherent
contribution to the spectrum.

The incoherent part of the hole spectrum is given by the
self-retracing paths; e.g., the t graph shown in Fig. 2(a)
is a two-step retracing path. In the limit J' J 0 our
formulation becomes identical to that of Brinkman and
Rice; the sum of all self-retracing paths [of the form
shown in Fig. 2(a)] then gives rise to a bandwidth of
4(z —1) 'tzt for the incoherent hole motion. It is easy to
generalize this result to J'WO. When the hole moves, it
leaves a string of reversed spins behind. In the Ising case,
the energy of this string increases linearly with length in
two and three dimensions. Thus the hole is bound to the
origin and the density of states becomes a series of
discrete poles. Near the Ising limit (J «J') as well,
the dominant contribution to the incoherent spectrum is
given by self-retracing paths of the type shown in Fig.
2(a). One can thus describe the low-energy part of the
hole Green's function accurately by the dominant pole ap-
proximation GiI"'(cp) ap/(m —mp) +Cp, with a p —J'/t.

A key question is whether this Ising result remains valid
in the Heisenberg limit (J J'), where conceivably the
low-energy long-wavelength spin waves could effectively
reduce the string energy to zero. To address this question,
we replace the double lines in the self-retracing graphs
[such as Fig. 2(a)] by the on-site spin-wave propagator
(TS;+(t)S; ) (i E A). We expect this to incorporate the
essential physics, the gaplessness of the spin excitation
spectrum. In the Heisenberg limit, graphs of a second
form also contribute; here the spin lines are the lowest
contribution to (TS; (t)$;+), and we replace them by the
spin-wave propagator as well. We can neglect Hi, which
would merely renormalize the string energies. Summing
up all self-retracing paths, we obtain the following self-
consistency equation for the incoherent hole self-energy:

~ inc( )
akzt

rp —ap/2 —rpk+ib [(z —1)/z]Z—'"'(cp —a) )k'
(4)

where cpk are the spin-wave energies and ak ap/tpk. We
have only been able to solve (4) numerically. For d 2,
we And that a single bound state persists, pushed slightly
below a reduced Brinkman-Rice-type band edge, and so
the low-energy hole is still bound to the origin. The dom-
inant pole approximation is therefore also valid in the
Heisenberg limit. Most interesting is that the spectral
weight of the dominant pole turns out numerically to be
linear in (J/t) only up to J/t-0. 01, beyond which a
strong nonlinearity develops. ' The self-consistency equa-
tion (4) has a qualitatively different form than that ob-
tained by Kane, Lee, and Read. "We believe that this is
because Kane et al. include additional graphs which in our
approach are suppressed by the constraints prohibiting

I

both hole and spin excitations on the same site. The solu-
tion of (4) has no real pole for (z —1)/z~ 1, i.e., when
paths are double counted in the self-retracing sum. The
behavior of the spectral weight of the pole is therefore
controlled by 1/z.

Finally, we turn to the discussion of the coherent hole
propagation. We are interested in the properties of the
low-energy states which derive from the low-lying pole
found in the incoherent spectrum in both the Ising and
Heisenberg limits. The lowest-order (in J ) contribution
to coherent motion is shown in Fig. 2(b): a hole hops
twice and the string of reversed spins is swept up by a vac-
uum fluctuation. (An equivalent graph in which the re-
versed spin precedes the hop gives a factor of 2.) The
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Gb (k, ro)
I

[GiI"'(ro) J
' —t za (S; SJ+)Gb"'(ro)

(6)

The poles of Gb(k, co) are real for ek & 0. For a quantita-
tive solution, we use the dominant pole approximation for
Gb"'(co). In the Ising limit, one obtains a bandwidth of
order J due to the reduction of the spectral weight of the
pole in Gb"'(ni) by J'/r, in agreement with Ref. 5. In the
Heisenberg limit, however, our numerical solution of (4)
shows that the pole's spectral weight is nonlinear in J/t for

self-energy of this graph, which we denote by tz, is given
by

r2 r . Gb (ru nil )Gab(&1)Gab( Col) .,J ~ Chai

2 " —2+i

(5)

Near the Ising limit, (5) gives an effective hopping matrix
element t 2 for the hole. At the lower band edge,
) ai )

-r »J—ai i, since G,b ( ~ oii ) is the propagator for a
spin excitation. The frequency scales decouple and the
remaining integral over coi is just the lowest-order (in J )
contribution to (S; SJ ). In the Heisenberg limit, there-
fore, making the same spin-wave replacement for the spin
lines, t2 becomes t (S; S/+)Gb"'(ni).

As in the spin-wave calculation above, in the lowest ap-
proximation the (dressed) hole propagates by repeating
the step shown in Fig. 2(b) in an RPA-like sum. This
leads to an effective kinetic energy t 2', where
ek z y$ —z. We obtain

J/r-O. I. ' Thus the coherent bandwidth (-apt) is
linear in J/t for very small J/t but nonlinear in the region
of interest. The minimum of the band lies at
~ k„~k» x. The same degeneracy is found by exactly
diagonalizing a 16-site lattice with one hole. ' Physically,
these propagating states develop from the localized states
which form the lowest pole in the incoherent spectrum.

In conclusion, we have discussed a new way to apply
Green's-function techniques to charged spin systems
which satis6es the local constraints exactly, taking the
t —J model on a bipartite lattice as an example. This ap-
proach is systematic and can be readily generalized to oth-
er lattices and charged spin systems. The approach treats
spin and charge degrees of freedom on an equal footing
and is therefore well suited to study the interplay between
the two. We have used the formahsm to treat the hole
propagation, finding that holes can propagate coherently
with a bandwidth —J in the Ising limit and by a non-
linear function of (J/r) in the Heisenberg limit, where the
occurrence of coherent states is intrinsically related to the
local constraints. The simple physical picture of these
states is that of a dressed Brinkman-Rice-type hole which
propagates coherently with the help to the transverse
pieces of the spin-spin interaction.
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