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We have numerically evaluated the energy of several kinds of wave functions considered to be
candidate ground states of the two-dimensional z-J model at various hole densities. We searched
a parameter space which includes d-wave and s-wave superconductivity and spin-density-wave or-
dering as well as the projected Fermi-liquid state. Coexistence of different orderings, such as the
s+id state and d-wave spin-density-wave state, were found to be stable states. We find a phase
diagram in the density-z/J plane which has coexistence of antiferromagnetism and superconduc-
tivity at very low hole concentrations and superconductivity up to rather high values of density
—about 40%. At intermediate concentrations, the time-reversal symmetry breaking s +id state is

found.

The strong-coupling Hubbard model was the first to be
proposed as a model for high-T. superconductivity.!
More specifically, the one-band 7-J model was shown to
provide a consistent description of the low-lying energy
levels of copper oxide sheets.? Recent first-principles cal-
culations indicate that the parameter regime of the real
materials is one in which the 7-J model applies. >

This makes it imperative to understand the phase dia-
gram of the model as a function of the only dimensionless
energetic parameter in the model, namely J/t, and the
hole density & which can be adjusted in the experimental
system by doping. =1 —n, where n is the number of
electrons per site. We present here a calculation of this
phase diagram within the space of Gutzwiller wave func-
tions, defined here as Hartree-Fock or BCS one-particle
wave functions which are projected on the subspace of the
one-band Hilbert space in which no sites are doubly occu-
pied. The no-double-occupancy constraint is thus satisfied
exactly, in contrast to mean-field slave-boson treatments.
We compare our results to those arising from other
methods below.

The Hamiltonian we use is

H=T+H,+H;,
where
T= —t(z)(a,-f,a,-o+H.c.),
i
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In these formulas a;, = (1 —n,-_o)c,-f,, where ¢l is the elec-
tron creation operator, nj; =c;5Cis, and n; =X.on;;. In Hj,
the three-site term, the sum runs over nearest neighbors j
and k of site i which are such that j=k. The three-site
term is often ignored because of its complexity. It has im-
portant physical effects at moderate doping levels, as we
shall see below.
The wave functions we use may be written as follows:

l V/) 'PNPDl:[(uk'i'vkdzydtkl )]0) .

In this formula Py is the projection onto the /N-particle
subspace and Pp is the usual Gutzwiller projection onto
the subspace of no-doubly-occupied sites. vy/ux=A(k)/
fee+ 68+ |A®K) 12173, where & = —2t(cosk, +cosk,)
—u and u is the Fermi energy. Thus, vy and uy are the
usual BCS coherence factors for a momentum-dependent
gap function. Furthermore, dix, =axcks+ ofrck+Qo is the
Hartree-Fock spin-density-wave destruction operator.
We set Q=(x,n), appropriate for a commensurate anti-
ferromagnet, and af=7% + § cosfy, BE=7% — ¥ cosby,
with cos26,=1+A%/(&x+u)?. These are the standard
mean-field expressions and they involve the variational pa-
rameter A,4, which controls the sublattice magnetization.
We take, in addition, a rather general expression for the
superconducting-gap function:

A(k) =Ags(cosk, +cosk, )+ Ap(cosk, —cosk,) ,

which represents a mixture of extended s-wave and d-
wave superconductivity. There are, therefore, three varia-
tional parameters A4, As, and Ap which are varied at any
given value of 7/J and 8. The energy is minimized with
respect to these parameters to find the ground state. Note
that As =Ap =0 corresponds to a pure antiferromagnetic
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state, A4 =0 is a pure superconductor (if §>0), and
A4=As=Ap=0 is simply the projected Fermi-liquid
state. In general, the wave function represents a state in
which antiferromagnetism and superconductivity coexist.

The wave function we use is different from that of Lee
and Feng.* They multiplied a projected BCS wave func-
tion by a modulation factor to represent the spin-density
wave. Our wave function has the advantage of reducing
to the projected Hartree-Fock antiferromagnet in the case
where As =Ap =0. This latter state is the one which is
known to be very accurate close to half filling where the
antiferromagnetism is important.

The results in the half-filled case are as follows. A pure
d-wave state with Ap =1 is favored in the superconductivi-
ty sector, as previously found by Gros.® Additional ener-
gy is gained by turning on A4, as shown in Fig. 1. The
equilibrium value is A4 =0.15¢; our calculations show that
this corresponds to a staggered magnetization of 0.15 in
units where the Néel state has a magnetization of 1. The
ground-state energy is (—0.3305 %0.0004)J, to be com-
pared, for example, with —0.331J.% Of course at half
filling the system is insulating, and the fact that Ap=0
does not imply the existence of a nonzero superfluid densi-
ty.
Away from half filling, we find that antiferromagnetism
quickly disappears, but superconductivity remains. The
transition appears to be of second order, as may be seen
from Fig. 2. We investigated the energy as a function of
Ap and A4 in the region of small doping 6 <0.05. The
equilibrium value of Ap remains essentially constant:
Ap=1t while A4— 0 along a line in the &-J/t plane,
shown as the lower curve in Fig. 3. This is, therefore,
identified as the phase boundary between the coexistence
state, stable at very small &, and the pure superconducting
state.

In the superconducting regime of intermediate hole
concentrations we did a parameter search in the space of
Ap and Ag, choosing Ap to be pure real and Ag to be ei-
ther pure real or pure imaginary—the s+d and d+is
states, respectively. The latter is degenerate with the
s+id state, so this is how we refer to it. Other possibili-
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FIG. 1. Total energy in units of ¢ as a function of A4, the
variational parameter for spin-density-wave ordering, in a back-
ground d-wave superconducting state. Ap=t, J/t =0.4, §=0 is
the case considered. Errors are less than 0.2%, so the minimal
value of A4 can be located rather precisely. The simulations
were performed on an 82-site lattice with 8 x10°® Monte Carlo
steps.
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FIG. 2. Total energy in units of ¢ as a function of A4 for
6=0.05. Parameters are otherwise as in Fig. 1. The minimum
appears to move continuously to A4 =0 as a function of &, indi-
cating a second-order transition.

ties may be considered but they are not stable in a simple
Landau theory. Also, the computation involved is
sufficiently extensive that only a restricted region of the
parameter space can be investigated. We found that the
s +d state is always unstable. The s +id state, on the oth-
er hand, is clearly stable at higher doping levels, as sug-
gested by calculations of Kotliar.” These results are not
too dissimilar from the mean-field results of Inui etal.®
except that they found that an s +d state was stable rath-
er than an s +id state. They also found a region of pure s
wave, which we did not. A crucial difference is the in-
clusion here of the three-site term, which dominates the
spin-spin term at § > 20%.

At higher hole concentrations, we observe a transition
from the superconducting to the Fermi-liquid state. These
calculations are more difficult than the calculations at low
hole concentrations for two reasons. The finite size pro-
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FIG. 3. Phase diagram of the model as a function of § and
J/t. High values of J/t correspond to an unphysical regime of
the model and therefore they are not considered.
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duces strong oscillations in the energy as a function of
density due to shell effects in momentum space. Also, the
three-site term is very important for §20.15 and the cal-
culation of this term is time consuming. The energy
difference for a single case is plotted in Fig. 4. An average
over the oscillations is given by the straight line. The
phase boundary is determined by the intersection of this
line with the axis. This produces the upper phase bound-
ary in Fig. 3. Somewhat surprisingly, the superconduct-
ing state persists up to the rather high hole density of
8=0.4. This confirms the general idea that the Fermi-
liquid state is not very stable in this model. It seems likely
that this state would be unstable to some other state of
higher entropy than the s+ id state, which would then be
the actually observed normal state.

Let us now compare these results with experiments, tak-
ing J/t = 0.28°. The position of the lower phase bound-
ary is in good accord with experiment,’ but the low-
density phase is insulating in the real system. In the
La;—,Sr,CuQ4 system, in which the density is easily
tuned, we expect considerable disorder due to the Sr
charges. It is, therefore, reasonable to suppose that a cer-
tain number of holes would be localized in this system, an
effect which does not occur in the above calculations on a
perfectly homogeneous lattice. If the localization transi-
tion takes place near the magnetic transition as a function
of &, then our results are certainly consistent with the ob-
servations. We note, in particular, that no metallic phase
comes between the superconducting and the antiferro-
magnetic phase in both theory and experiment.

We find a definite transition between a d state and an
s +id state as a function of doping. It is tempting to asso-
ciate the former with the 7.=60 K phase of YBa,-
Cu307 -5, and the latter with the 7. =90 K phase. In the
90-K phase, this would be consistent with penetration-
depth measurements, '® since the s +id state is completely
gapped. The rather peculiar NMR results are probably
also consistent with such a state.!' The s+id state breaks
time-reversal symmetry. It is not clear, however, that it
would generate internal magnetic fields, because the gra-
dient terms in the free energy have an unusual form.'? At
present, we do not know if this state is consistent with re-
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FIG. 4. Total-energy difference in units of ¢ between super-
conducting and Fermi-liquid state for different doping levels.
The curved line is a guide to the eye. The straight line repre-
sents an attempt to smooth the data in order to eliminate finite-
size-shell effects. The simulations in this region were performed
on a 122-site lattice with 8 X 10° Monte Carlo steps.

cent uSR results.'> It would be consistent with the obser-
vation of circular dichroism. '*

The theoretical boundary between normal and super-
conducting states is probably at somewhat higher & than
the experiments give, although this is hard to measure in
both the calculations and in the experiments. We ob-
tained this boundary by assuming the normal state to be a
Fermi liquid. As noted above, this may be questionable in
view of the rather anomalous properties of the normal
state. If indeed the Fermi liquid is unstable with respect
to some other exotic but normal liquid, then the energy
balance between the latter and the superconducting phase
would move the phase boundary to lower &.

This research was supported by the NSF under Grants
No. DMR-8913862 and No. DMR-8812852. We would
like to thank T. M. Rice for helpful discussions.

IP. W. Anderson, Science 235, 1196 (1987).

2F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

3M. Schluter and M. Hybertsen, Physica C 162-164, 583
(1989).

4T. K. Lee and S. Feng, Phys. Rev. B 38, 11809 (1988).

5C. Gros, Phys. Rev. B 38, 931 (1988).

SD. A. Huse, Phys. Rev. B 37, 2380 (1988).

’G. Kotliar, Phys. Rev. B 37, 3664 (1988).

8M. Inui, S. Doniach, P. J. Hirschfeld, and A. E. Ruckenstein,
Phys. Rev. B 37, 2320 (1988).

9Y. J. Uemura et al., Phys. Rev. Lett. 59, 1045 (1987).

10D, R. Harshman, L. F. Schneemeyer, J. V. Waszczak, G. Aep-
pli, R. J. Cava, B. Batlogg, and L. W. Rupp, Phys. Rev. B 39,
851 (1989).

P, C. Hammel, M. Takigawa, R. H. Heffner, Z. Fisk, and K.
C. Ott, Physica C 162-164, 177 (1989).

12R. Joynt, Phys. Rev. B 41, 4271 (1990).

3R, F. Kiefl et al., Phys. Rev. Lett. 64, 2082 (1990).

14K. Lyons, J. Kwo, J. F. Dillon, G. P. Espinosa, M.
McGlashan-Powell, A. P. Ramirez, and L. F. Schneemeyer,
Phys. Rev. Lett. 64, 2949 (1990).



