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The variance of the Hamiltonian in a given variational wave function measures how good an

eigenstate this wave function is. In some instances, as for the two-dimensional antiferromagnetic
Heisenberg Hamiltonian (2D AFH), the energy expectation value is not enough to distinguish be-
tween different trial Ansa'tze. Here we propose the variance as a simple criterion, which allows

for further differentiation between degenerate trial wave functions. We show that this criterion
establishes the projected wave functions as candidates for the ground state of the 2D AFH. A
strong interference effect is discovered in computer experiment.

INTRODUCTION

Variational wave functions are powerful tools in con-
densed matter physics. The variational principle guaran-
tees that they provide an exact upper bound for the esti-
mate of the ground-state energy of a given physical sys-
tem. Their usefulness lies in the presumption that the
lower the variational estimate of the ground-state energy,
the better the wave function. This, the usual criterion of
wave-function quality, has been used successfully in many
circumstances.

Lately, in the context of strongly correlated electron
systems, a breakdown has been observed of this simple
measure of quality, i.e., how close to the ground state a
given variational wave function is. More specifically, a
variety of diff'erent trial wave functions' have been pro-
posed for the ground state of the two-dimensional (2D)
antiferromagnetic Heisenberg Hamiltonian (AFH),
which may be viewed as the limiting model of the t J-
Hamiltonian at zero doping. These wave functions have

physically very distinct properties. Some of them show
antiferromagnetic long-range order, others do not. Some
are formulated in terms of spin operators, others in terms
of anticommuting fermion operators. Nevertheless, many
of them yield about the same variational estimate for the
ground-state energy, which is very close to that obtained
by other numerical methods, especially by the Green's-
function Monte Carlo method. On the basis of energy
expectation values alone, one cannot choose a best trial
wave function for the 2D antiferromagnetic Heisenberg
Hamiltonian from among those proposed so far.

Recently, some successful calculations have been per-
formed in order to attest the quality of a given wave func-
tion by other means than the energy expectation value
alone. One of the prominent studies is that of the Laugh-
lin wave function for the fractional quantum Hall eff'ect,

where the overlap matrix element with the exact ground
state for systems with 3 to 5 particles could be evaluated.
Similar studies of variational wave functions have been
performed for the case of the t Jmodel and that of-
fractional-statistics particles.

In a diff'erent context, the question of the ground state
of atoms and small molecules continues to attract atten-
tion. One of the problems of interest in this field is the

functional form for the wave functions which recovers
most of the correlation energy. Umrigar, Wilson, and
Wilkins have shown that in this context it might be more
efficient not to minimize the energy, but the variance of
the Hamiltonian (see Ref. 7 also for reference to earlier
ideas on this subject).

In this paper we consider a criterion for what consti-
tutes a good trial wave function which may be evaluated
for relatively large systems (with 50-150 degrees of free-
dom) by a Monte Carlo method. We will define the vari-
ance of the Hamiltonian as a measure that indicates how

good an eigenstate a variational wave functions is. We
have calculated this measure for a projected wave func-
tion which supports a superposition of both an antiferro-
magnetic and a d-wave order parameter. The measure
shows an extraordinary interference eff'ect which proves it
a valuable criterion for the goodness of a given trial wave
function. Since the measure is very easy to compute (in
many evaluations of trial wave functions it could be ob-
tained as a by-product), the knowledge of its behavior is
of general interest. Furthermore, we will discuss some of
the physical consequences for the case of projected wave
functions.

HAMILTONIAN

Let us first define the Hamiltonian to which we will ap-
ply the method to be developed in this paper. The antifer-
romagnetic Heisenberg Hamiltonian with a coupling an-
isotropy is given by

eJ„, (rex') =g V,s;S;+J./2
(i,j )

X(s;+SJ +S; s,+)], (I)
where J, ~ Ji&0 are the strengths of the Ising and
transverse couplings, and (i,j) are pairs of a nearest
neighbor of an %xN square lattice with periodic bound-

ary conditions. The spin operators are given in terms of
the underlying fermion operators as S;= —,

' (c; lc; 1—c; lc; 1) and S;+ =c; lc; 1. When considering a varia-
tional approach to this Hamiltonian, a key feature to keep
in mind is that the thermodynamic and the isotropic limits
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do not commute:

Hi ——lim lim HJ J (NXN)
N oo J~ Jz

A lim lim HJ J (NXN) =—Hi .
J ~ J Pj~oo

(2)

METHOD

Now I will explain the method. Let us denote by ly)
some favorite trial wave function. In order to calculate
the properties of I y), we must know the amplitudes &alp)
and corresponding matrix elements for at least one com-
plete set of states g, la)&al. In the case of a spin Hamil-
tonian, as considered above, the

I
a) are normally the set of

all spin configurations. The expectation value of any
operator 8 in I y) is then given by

&8)
w(8(v g v (8( a lvagf (,) (,)
&wlw& ~ &v(v &

(3)

where we have defined fz(a) =&y(8(a)/&gala) and p(a)
=(&alit')( /&y(y). In a variational Monte Carlo' (MC)
approach, Eq. (3) is directly used. Since p(a) ~0 and

P,p(a) =1, one can evaluate Eq. (3) by a random walk in
configuration space, measuring the local quantity fe(a)
and sampling the configurations with large weight p(a).
The result is an evaluation of Eq. (3) with a certain sta-
tistical accuracy, which is inversely proportional to the
square of the number of Monte Carlo measurements. The
size of the systems which can be evaluated is substantially
larger than what would be possible by an exact summa-
tion over configuration space.

We may always rewrite the expression for the expecta-

Both H i and H2 might be viewed as representations of the
antiferromagnetic Heisenberg model on an infinite lattice.
They are expected to support a linearly dispersing Gold-
stone mode, as a consequence of the continuous spin-
rotation symmetry. The first one, limj, J HJ J,(N XN),
which is normally studied in nuinerical approaches on
finite lattices, has a singlet ground state and shows anti-
ferromagnetic long-range order in the thermodynamic
limit without breaking spin-rotation symmetry explicitly.
Consequently, in the ground state

&s;s;)- -,
' (-,' &s,'s, +s,-s,') ),

for all N and all dimensions. [The factor —,
' inside the

parentheses originates from the J&/2 in Eq. (1).] On the
other side, the ground state of H2 does break spin-
rotational symmetry explicitly and shows a staggered mo-
ment in the z direction. (This might also be called a spon-
taneously broken symmetry. ) It is this Hamiltonian
which most variational approaches attempt to describe. A
less-well-known property of the ground state of H2 is that
&S;SJ')= 1.00( 2 &S; 'S~ +S; S~+)), to a high level of ac-
curacy This. factor =1.00 is a consequence of the two
dimensionality, in higher dimensions &S,'SJ')»&S;+S~
+S; SJ ). (In infinite dimensions the Neel state will be-
come asymptotical to the exact ground state. ) It is this
property of H2 that we will take into account later on.

tion value of 8 in I y) in operator form

8(y&= ~ ~ Iv&+le.&,
8 y) (4)

where &y(pe)=0. Most importantly, if litt) is an exact
eigenstate of 8, than the correction lpq)—:0. For exam-
ple, if we consider the case of the Hamiltonian, then
&pHI&H) measures how good an eigenstate the trial wave
function is. In the following we will show that this quanti-
ty is very easy to calculate.

Let us assume here for simplicity that 8 is Hermitian.
Using Eq. (4) we define the relative measure

& wl (8 —&8&) 'I y&

&wlv&

A simple calculation using Eq. (3) shows that

ae- g [fg' (a) —&8)][fe(a) —&8&]p(a)
, a

(s)

(6)

This equation shows that no new matrix elements have to
be evaluated in order to calculate oe, since the quantities
fe(a) were already needed for Eq. (3). We can interpre-
tate ae in three different ways. (i) Equation (4) tells us
that ere measures how good an eigenstate (y) is of 8. (ii)
Equation (S) tells us that oe measures the quadratic fluc-
tuations of 8 in I y). (iii) Equation (6) tells us that ae can
be viewed as the standard deviation (variance) of the local
quantity fe(a) in Iy).

WA VE FUNCTION

The concept formulated above is completely general. It
applies to any operator or Hamiltonian and any wave
function. Now we will apply it to a concrete case of
current interest. Intensive studies have shown that pro-
jected wave functions are interesting variational wave
functions for the 1D and 2D antiferromagnetic Heisen-
berg model. We define a class of projected wave func-
tions as

I y) Pp II (uir+ virdittd-gt )
kC RBZ

("ir.+Q+ vir+Qeitte —kt )(0& .
kC RBZ

Pp projects onto the subspace of no doubly occupied sites.
The di, and ei, , are the creation operators of bonding
and antibonding bands, respectively, for a Hartree-Fock
spin-density wave, defined only for k in the reduced (anti-
ferromagnetic) Brillouin zone (RBZ): di, =ui, ci,
+ovi, cq~Q and ek = —crv ci~i+uciiQ+. Here, Q= (z, tr) is the antiferromagnetic nesting vector, and
a = + 1. In principle, the u k, U g and up, up are free varia-
tional parameters. But in order to make a numerical eval-
uation feasible, we will use a parametrization, which can
be justified by a renormalized mean-field approach. To
this end, we will retain only two variational parameters,
namely AAF and Asc, which control the amount of anti-
ferromagnetic and d-wave correlations, respectively:
ui, /van=bi, /[ek+(ei, +b,q)' ] and vi„uk= i [1 ~eir/[ei
+ (eq+ A~F) 't ]]. Here we denoted ei, = —2[cos(k„)
+cos(k~)] and Ai, =ttsc[cos(k, ) —cos(k~)].
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RESULTS

Although os, as defined by Eq. (6), is strictly positive, it
is not bounded above. The value of os for a given 8 has,
therefore, no meaning per se. Nevertheless, we can obtain
useful information by comparing the values of the fluctua-
tions for different operators 8. To test the quality of a cer-
tain trial wave function, we separate the Hamiltonian into
distinct contributions. For the case of the antiferromag-
netic Heisenberg Hamiltonian, a natural separation is into
the Ising and the transverse part, so we will consider
8 g(; ~&S,'Sj, g&; J& 2 (S;+SJ +S; Sj+), and g&; J&S; S),
leading to o„o„~,and o,~„respectively.

In Fig. 1 the results for o„o„~,and o,~, are shown for
the projected wave function ~y), as defined by Eq. (7).
The d-wave order parameter hsc is held constant at
&sc 0.5, while varying OAF, the order parameter which
controls the amount of long-range antiferromagnetism.
The calculations were done by a Monte Carlo evaluation
of

~ y) on a finite lattice with 50 sites; every data point is
the average of 2400 MC measurements. [For details on
the technique see Ref. 1(b)].

The behavior of o, is illustrative. In the limit d,~F
the wave function reduces to the classical Neel state. For
this state, the Ising component of the interaction is diago-
nal and o, must vanish. We observe this behavior in Fig.
1.

While the transverse fluctuations cr,~ do not show any
particular features, a strong interference effect occurs for
the fluctuations in the total energy a„~,. They show a
deep minimum at AAF-0. 3. (The exact location of the
minimum is slightly size dependent. " For larger systems
it is at BAF-0.2. ) While ~y) is not a particularly good

—0.30—
I I I I I I I I I I

eigenstate for any of the components of the Hamiltonian
for this choice of parameter, when we combine both com-
ponents to form the total Hamiltonian, this measure of the
eigenstate quality improves by a factor of 3. This is a very
strong effect. A decrease in the fluctuations of the total
energy by a factor of 3 is equivalent to a decrease by a
factor of 9 in the number of Monte Carlo measurements
(i.e., in the time) necessary to calculate the energy expec-
tation value with a certain accuracy. Note, however, that
these results do not imply a priori, that the wave function
has a large overlap with the exact ground state, only that
it has a large overlap with some eigenstate. Only by con-
sidering additional properties of

~ y), as we will do in the
following, can one establish a connection to the exact solu-

tion.
The results for a„~, in ~y) acquires additional sig-

nificance when considered within the context of the usual
criterion of variational quality, namely the expectation
value of the total energy. In the upper part of Fig. 2 the
ground-state energy per bond is shown for a constant

0.5. A search in the two-dimensional space of varia-
tional parameters shows that the minimum is realized for
dsc-0. 5 and AAF-0. 3. At the minimum, the value of
the energy per bond is ——0.3325J. (This value is nearly
independent of system size. ) This value is very close to
the estimates obtained by other methods, ' ——0.3346J.

For the case of the AFH considered here, we are able to
consider a third quantity and support the notion that the
interference efl'ect shown by )y) is of physical relevance.
In the lower part of Fig. 2 we have plotted the ratio of the
expectation value of the transverse part of the spin in-
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FIG. 1. The standard deviation of the nearest-neighbor trans-
verse spin fiuctuations (a„~, open diamonds), the Ising interac-
tion (cr pe o„sqnuares), and of the Hamiltonian (o„~„solid
squares), as defined by Eq. (6). The lines are guides to the eye.
The data is plotted as a function of OAF, for a constant hsc 0.5.
The statistical inaccuracy of the data (the corresponding error
bars are omitted) shows up in the slight scattering of the data
along a smooth curve. Note the strong interference effect in

o„~„ that is the minimum at OAF-0. 3. This indicated a large
overlap of

~ Irl with an exact eigenstate of the AFH.

FIG. 2. Upper part: The expectation value of the Hamiltoni-

an per bond in units of J. The data is plotted as a function of
OAF, for a constant hsc 0.5. The minimum occurs at the same

values of AAF-0. 3 and h,sc-0.5 as the interference effect de-

scribed in Fig. 1. Lower part: The ratio of the expectation value

of the transverse spin coupling to the Ising interaction. As dis-

cussed in the text, the data drops from a value of two for h, AF =0
to zero as OAF . The important point is that the ratio
crosses unity very near the point where both the energy and the
standard deviation of the energy fluctuations are minimal. This

ratio of one has been predicted for the exact ground state.
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teraction to the expectation value of the Ising part. This
ratio would be expected to vary between two for OAF =0
(because ( y) is then a spin singlet) and zero for AAF

(because ( tlr) is then identical to the Neel state). This ra-
tio is one at nearly the same value of parameters, at which
both the energy is minimum and o„~, is minimum. Note
that this is the value expected for the exact ground state of
the H2 in 2D. Furthermore, a search in the space of vari-
ational parameters shows that the ratio is close to unity
only at this single point in parameter space. (The set of
parameters where this occurs is slightly size dependent
and is close to hsc-0. 5 and AAF-0. 2 in the thermo-
dynamic limit. )

Here we found that the variance, &(H —&H)) ), was
minimal when (H) was so. If this relation would hold in

general, the variance would merely duplicate the informa-
tion contained in &H). Indeed this might be the case for
certain classes of variational wave functions, but not gen-
erally. It is easy to construct for nearly any given Hamil-
tonian a wave function with finite variance but with an en-
ergy expectation value arbitrary close to that of the exact
ground state.

To be specific, let us consider the continuum version of
the harmonic oscillator: H(ta) bra~ca) for ta C [0,~]
and with &ta'~ca) b(ta' —ca). The wave function ~y)

f0 dta(to+ coo) "l
~
ca) has the properties &y( y)

tao "/(y —I) and (H) tao/(y —2) whenever y& 2 for
convergence. For fixed exponent y, the ground-state ener-

gy approaches zero for tao 0. But ((H —&H))2):—ao

for y~ 3 and all tao. A low-energy expectation value
does, therefore, not imply low-energy fluctuations and
that the state is a relatively good eigenstate.

CONCLUSIONS

In addition to the usual criterion of what constitutes a
good variational wave function (a low expectation value of
the Hamiltonian), we have examined the variance of the
Hamiltonian as a measure of how good an eigenstate the
trial wave function is of the Hamiltonian. This measure is
easy to evaluate and might be especially useful when ap-
plied to the antiferromagnetic Heisenberg model in two
dimensions. We evaluated the measure for a class of pro-
jected wave functions, as trial wave functions of the 2D
AFH, and find that at a single point in the space of varia-
tional parameters, three things coincide: (i) The expecta-
tion value of the energy is minimal, (ii) the state is (rela-
tively) the best eigenstate of the AFH (as measured by
our criterion), and (iii) the spin anisotropy take a ratio
which has been predicted for the exact ground state.

These results indicate, first, a close connection of the
projected wave function with the exact ground state of the
AFH and, second, that the evaluation of the variance as a
criterion for wave-function quality might prove a valuable
tool for related approaches by trial wave functions.
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