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Chapter VII
Emotions, Diffusive Emotional 
Control and the Motivational 

Problem for Autonomous 
Cognitive Systems

C. Gros
J.W. Goethe University Frankfurt, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStRact

All self-active living beings need to solve the motivational problem—the question of what to do at any 
moment of their life. For humans and non-human animals at least two distinct layers of motivational 
drives are known, the primary needs for survival and the emotional drives leading to a wide range 
of sophisticated strategies, such as explorative learning and socializing. Part of the emotional layer 
of drives has universal facets, being beneficial in an extended range of environmental settings. Emo-
tions are triggered in the brain by the release of neuromodulators, which are, at the same time, are the 
agents for meta-learning. This intrinsic relation between emotions, meta-learning and universal action 
strategies suggests a central importance for emotional control for the design of artificial intelligences 
and synthetic cognitive systems. An implementation of this concept is proposed in terms of a dense and 
homogeneous associative network (dHan).

intRoduction

Is it a coincidence, a caprice of nature, that the 
species living presently on our planet with the 
most developed intellectual and cognitive capa-

bilities, humanity, is also thoroughly infused with 
emotions? Or is it a conditio sine qua non: Are 
higher cognitive powers intrinsically dependent 
on a functioning and solid emotional grounding? 
This question is centrally relevant for our scientific 
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and philosophical self-understanding, posing at 
the same time a paradigmatic challenge for the 
development of synthetic cognitive systems and 
artificial intelligences (AI).

A wide range of different notions are connected 
with the term emotion and with the personal ex-
perience of emotions (Barrett, Mesquita, Ochsner, 
Gross, 2007). Social interactions and emotional 
involvements, to give an example, take-up a good 
share of our daily life and the social aspects of 
emotional expressions are being widely discussed 
(Blakermore, Winston & Frith, 2004; Lieberman, 
2007). They constitute an important aspect in 
human-robot interactions (Breazeal, 2003) and 
may even play a role in human phylogenesis (Parr, 
Waller & Fugate, 2005), having a high adaptive 
value (Rolls, 2005). The study of synthetic emo-
tions (Picard,  2000) constitutes therefore a field 
of growing importance, dealing, beside others, 
with the role of emotions in artificial intelligences 
in general (Minsky, 2007), social robots (Duffy, 
2003; Fong, Nourbakhsh & Dautenhahn, 2003), 
emotional expression in speech and language 
(Murray & Arnott, 2008) and social synthetic 
computer characters (Tomlinson & Blumberg, 
2002).

It is well known, that emotions are triggered 
by neuromodulators like dopamine, serotonin and 
opioids, and that the very same neuromodulators 
can be found all over the animal kingdom, and 
not just in mammals (Arbib & Fellous, 2004). It 
is therefore reasonable to assume, that the neuro-
biological foundations of emotion-like function-
alities, being present to a varying extend in all 
animals having a central or distributed nervous 
system, precedented phylogenetically higher 
cognitive capabilities, like sophisticated social 
interactions or logical reasoning. This observa-
tion suggests an underlying functional role of 
emotions, or emotion-like regulative processes, 
for both simple and highly developed cognitive 
systems in general. Neurobiological studies have 
found indeed close relations between emotions 
and the internal reward system (Aron et. Al, 2005; 

Kringelbach, 2005; Burgdorf & Panksepp, 2006), 
indicating that there is a close relation between 
emotions and decision making (Damasio, 1994; 
Naqvi, Shiv & Bechara, 2006; Coricelli,  Dolan & 
Sirigu, 2007) quite in general. In the following we 
will describe, from the functional perspective of 
dynamical system theory, the role of emotions in 
cognitive systems. Taking into account the estab-
lished results from experimental neurobiology and 
experimental psychology, a theory for emotions 
will emerge that can be translated algorithmically 
precisely into formulas and code lines, a prereq-
uisite  for the realization of synthetic emotions 
in artificial intelligences and robots.

motiVationS

In order to elucidate the general functional pur-
poses of emotions we start by considering the 
motivational problem of self-determined living 
creatures, whether biological or artificial. We 
use here and in the following the general term 
`cognitive system’ for such an autonomous and 
self-determined being. The question then regards 
the general motivational drives for cognitive 
systems. 

The basic motivational drive of all living 
organisms is the `instinct for survival’ and it is 
sometimes assumed, indeed this is the general 
folklore in the larger public, that the survival 
instinct would be the sole driving force. In this 
context the desire to survive would determine in 
ultima ratio all activities of non-human animals, 
as well as the ones of humans, e.g. the decision 
to attend a violin concert instead of a cello per-
formance.

Cognitive systems are instances of complex 
and adaptive dynamical systems (Gros, 2008) 
and the survival instinct can be defined algo-
rithmically in a very precise manner, as we will 
do further below, in terms of a set of survival 
variables representing the health-status of their 
respective bodies. Nevertheless, the separate 
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motivational layer, the network of emotions, has 
several stand-alone features. Emotions might 
indeed be triggered by the processes representing 
the survival instinct, but generally they consti-
tute an independent dynamical component. The 
evolutionary fitness of an animal is increased 
both by a functioning survival instinct and by a 
suitable emotional framework (Fellous & Arbib, 
2005), but this matter of fact does not imply that 
both processes have identical causes.

Neuromodulators are the neurobiological roots 
of emotions (Fellous, 1999) and in the following 
we will first discuss their biological functional-
ities in general terms. We will be interested, in 
particular, in the interplay between local and non-
local homeostasis, meta-learning and the diffusive 
learning signals at basis of the diffusive emotional 
control. We will find that cognitive systems lack-
ing a diffusive regulative network akin to the one 
of neuromodulators in the brain, are not likely to 
have the potential for higher cognitive capabili-
ties. We will then discuss the implications hereof 
for synthetic cognitive systems in general and 
then proceed to formulate concrete algorithmical 
implementations of diffusive emotional control 
for generalized neural network architectures in 
the framework of dynamical system theory.

In conclusion, we will find that higher-level 
cognitive systems lacking diffusive emotional 
control are not likely to exist, that human-level 
artificial intelligences based on logical reasoning 
and the survival instinct alone are probably not 
possible. We will also see that an algorithmic 
implementation of diffusive emotional control is 
possible for synthetic cognitive systems and then 
shortly discuss that the resulting `true synthetic 
emotions’  will be quite alien to human emotions, 
as we experience them ourselves.

neuRomodulatoRS

Neuromodulators act, from a neurobiological point 
of view, as a diffusive control system, influenc-

ing not the firing state of individual neurons but 
the responsiveness in general of extended neural 
ensembles, and even of entire brain regions. From 
the perspective of dynamical system theory, neu-
romodulators are therefore the agents for `meta-
learning’ and homeostasis (Doya, 1999; Marder & 
Goaillard, 2006), the regulation of slow dynamical 
variables such as firing thresholds and synaptic 
sensibility, occurring either automatically or in 
response to internal or external status signals.

Homeostasis and autoregulation are ubiquitous 
in biological processes in general, and in the brain 
in particular (Turrigiano & Nelson 2004). Every 
individual neuron adapts its average responsive-
ness, e.g. its firing threshold, relative to the input 
it receives over time from afferent neurons. This 
example for a basic local homeostatic process 
determines the normal or average properties of 
neurons on an individual basis. The average prop-
erties of neurons can be influenced, in addition, 
by neuromodulators like dopamine, serotonin, 
and opioids. This regulation of slow variables by 
neuromodulators is, on the other hand, a process 
involving several distinct brain structures. Do-
pamine or serotonin neurons affecting cortical 
neural ensembles typically receive their signals 
from subcortical structures, like the amygdala 
(Phelps, 2006), neuromodulation is intrinsically 
non-local.

Emotions and neuromodulators are intrinsi-
cally linked, but not identical (Damasio, 1994; 
Fellous, 1999). There are probably no emotions 
without the concurrent release of neuromodula-
tors, but the brain is a complex and recurrent 
dynamical system. The geometry of the neuro-
chemical information flow is generally not 
uniquely directed in the brain, feedback loops are 
ubiquitous. The cognitive information processing 
and the neuromodulatory component are therefore 
strongly interacting. Emotional motivation may 
precede thinking (Balkenius, 1993), but cognitive 
control of emotions is also possible, and manifestly 
pronounced in humans (Grey, 2004).
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What makes then non-local homeostatic regu-
lation by neuromodulators ̀ emotional’, in contrast 
to the automatic local homeostatic processes 
occurring on cellular basis, which we may term 
`neutral’? Introspective experience and a vast body 
of clinical research data show that emotions and 
the organization of behavior through motivational 
drives are intrinsically related (Arbib & Fellous, 
2004). When behavior in response to a given emo-
tional arousal is not genetically predetermined, 
as it is generally the case for highly developed 
cognitive systems, then the cognitive system 
needs to learn an adequate response strategy. 
Algorithmically, this is achieved via reinforce-
ment or temporal-difference learning (Sutton 
& Barto, 1998). These learning processes avail 
themselves of reward signals and a given behav-
ioral response will be enhanced or suppressed for 
positive and negative reward signals respectively. 
A prominent candidate for a reward signal in the 
brain is dopamine (Iversena & Iversena, 2007). 
From this perspective one then concludes, that 
emotional diffusive control is characterized by a 
coupling of the regulative event to the generation 
of reward signals for subsequent reinforcement 
learning processes. 

The key question is then: How are the reward 
signals generated? Let us consider an example. 
If we are angry, we will generally try to perform 
actions with the intent of reducing our level of 
angriness. When this goal is achieved we then 
are, usually at least, content. That is, a positive 
reward signal, reinforcing the precedent behavior, 
has been generated. Generalizing this example 
we may formulate the working hypothesis, that 
the generation of reward signals is coupled to the 
activation-level of the emotional diffusive regu-
lative control processes. Let us note, that there 
is at present no direct clinical evidence for the 
overall validity of this working hypothesis. It is 
however very powerful, yielding directly a precise 
prescription for the algorithmic implementation of 
diffusive emotional control for synthetic cognitive 
systems and artificial intelligences. Emotional dif-

fusive control then corresponds to regulated meta-
learning. The optimal intensity, or the optimal 
frequency, of a regulated meta-learning process 
has a genetically preset value and the reinforce-
ment signal is generated when the meta-learning 
is activated too often or too rarely.

To conclude this section let us return to the 
initial question, whether a highly developed 
cognitive system without emotions, viz without 
non-local homeostatic regulation, is conceiv-
able. The neuromodulators in our brain set our 
state of mind. Curiosity,  anxiety or ebullience, 
to mention just a few of the myriads of possible 
emotional states, will generally lead to different 
behavioral strategies, providing the cognitive sys-
tem differentiated options for reacting to similar 
environmental settings. Without the emotional 
states the cognitive system would be reduced to 
maximizing its actual survivability probability, 
or the integrated survivability probability for 
the foreseeable future. These options however 
do not constitute an optimal use of resources in 
environmental situations, to give an example, 
where surviving is not at stake. A curiosity-driven 
explorative strategy might then be the better op-
tion, potentially increasing the lifetime-fitness of 
the cognitive system by a substantial amount. 

One of the defining characteristics of highly 
developed cognitive systems is the availability 
of a wide range of behavioral patterns. Diffusive 
emotional control provides these capabilities and 
this road has been taken by evolution, no alter-
native routes are presently known for synthetic 
cognitive systems.

cognitiVe SyStemS

Having discussed the neurobiological function-
alities of emotions, we now turn to the case of 
synthetic cognitive systems. Let us start by con-
sidering the defining properties of a cognitive 
system in general.
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Intuitively one may be tempted to identify the 
human cognitive system with the brain, viz with 
the physical brain tissue. This is however inap-
propriate, a cognitive system is strictly speaking 
an abstract identity, a complex dynamical system 
consisting of a (very large) set of state variables to-
gether with equations determining the time evolu-
tion of these variables. The cognitive system takes 
however ̀ life’ only once it becomes embodied, viz 
when it receives information through appropriate 
sensors or sensory organs and when it becomes 
able to perform action through appropriate actua-
tors or limbs. The central defining characteristic 
of a cognitive system lies in its capability to retain 
a physical support unit, viz a body, functioning 
and alive, at least for a certain period of time. 
This task takes place in a continuously changing 
environment, as illustrated in Fig. 1. A cognitive 
system is therefore an instance of what can be 
termed a `living dynamical system’.

It is interesting to point out in this context, that 
the physical brain tissue of a person is a part of 
the environment, and the human cognitive system 
is the sum of the biophysical processes resulting 
from the neural brain activity. Philosophical 

niceties apart, we may define with ̀ environment’ 
everything in the physical world the cognitive 
system may obtain sensory information about, 
either directly or indirectly via appropriate instru-
ments. And indeed, we may obtain, at least as a 
matter of principle, knowledge about the complete 
physical-chemical state of every one of our own 
constituting neurons.

SuRViVal VaRiableS

The primary task of a cognitive system is to keep 
its own support unit alive. Technically we can 
define a set of survival variables and the survival 
instinct then corresponds to the task of keeping 
these survival variables in a genetically given 
range. Typical examples for survival variables 
of biological beings are the blood sugar level, the 
blood pressure or the heart beating frequency. A 
classical survival variable for a robotic cognitive 
system is the battery status. Simple cognitive 
systems are equipped with preset responses for 
deviations of the survival variables from their 
target values, like the simple uptake of food in 

Figure 1. Cognitive system. Schematic illustration of the interplay between an autonomous, i.e. a self-
determined cognitive system and its environment. The cognitive system is an abstract living dynamical 
system, its time-evolution equations being executed by part of its support unit (shaded region), which 
corresponds to the brain for a biological cognitive system. Note that its physical support unit, viz its 
body, is part of the environment from which the cognitive system receives both external and internal 
sensory input data.
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case of hunger, or the search for a socket when 
the battery is low. More sophisticated cognitive 
systems will generally need to acquire adequate 
responses by learning. E.g. they might need to 
learn which kinds of food or plant actually reduce 
the level of hunger and which do not, or how to 
find the next socket in an artificial labyrinth.

The programming of most real-world robots 
and AI-programs may be cast into this framework. 
A chess program typically has just one survival 
variable, the chance of winning the game. The 
value of this variable is evaluated via sophisti-
cated deep-search algorithms and the next move 
it determined by the condition of maximizing the 
chance of winning the game, viz the probability 
of survival.

Technically, the implementation of a gener-
alized survival instinct for synthetic cognitive 
systems does not pose any problem of principle.  
The actual distance of the survival variables from 
their given target value can be taken as a measure 
for the inverse probability of surviving and any 
action of the system resulting in an increase or 
in a decrease of the survivability probability will 
then trigger a positive or a negative reinforcement 
signal. This reinforcement signal can then be used 
for appropriate internal supervised learning, in-
creasing or decreasing respectively the probability 
that the same course of action will be taken in 
the future for similar environmental conditions. 

The positioning of the survival instinct within 
the motivational structure of a cognitive system 
is illustrated in Fig. 2.

autonomouS dynamicS

The simplest conceivable cognitive systems would 
just react in predetermined ways to incoming 
sensory stimuli. These responses might be simple, 
like the flight instinct in the case of danger, or 
computationally demanding. A soccer-playing 
robot reacts to the environmental situation, the 
current position and the velocity of the ball and of 
the other players, evaluating complex algorithmic 
routines. The soccer-playing robot is autonomous 
in the sense that it does not need a human controller. 
The robots participating in Robo-Cup are however 
not self-active in the terms of cognitive system 
theory. At no point does the soccer playing robot 
consider alternative action strategies; the robot is 
forced by its programming to continue playing 
soccer until the game is finished or the battery 
breaks down. The soccer playing robot will not 
interrupt playing because of anger or curiosity, it 
has just one possible ̀ state of mind’. No conflicting 
internal emotions or states of mind will distract 
the soccer playing robot.

On a higher level, a cognitive system would dis-
pose of non-trivial internal processes. To classify 

Figure 2. Motivational pyramids. Schematic illustration of the motivational pyramids for simple (left 
drawing) and highly developed (right drawing) biological or synthetic cognitive systems. The primary 
drives correspond to the genetically encoded survival mechanisms, guaranteeing the basic functionality of 
the support unit. The secondary drives correspond to the diffusive emotional control setting longer-term 
goals and survival strategies. The tertiary level correspond to the culturally acquired motivations. Note 
the predominance of the secondary and the tertiary drives for highly developed cognitive systems.
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as autonomous or self-induced, these dynamical 
processes would need to continue indefinitely even 
in the absence of sensory stimuli. The internal 
dynamics remains active even in the presence of 
a static or quasi-static environment, when noth-
ing is happening in the outside world. One could 
say, the system is continuously thinking by itself. 
For mammalian brains this is a well-known and 
defining neurobiological characteristic. The neural 
activities of higher cortical areas of mammalian 
brains are influenced and modulated by sensory 
stimuli, but not directly driven (Fiser, Chiu & 
Weliky, 2004). The response is generally not 
forced. We are hence interested in the interplay 
of self-generated cognitive activity and emotional 
control in autonomous cognitive systems.

aSSociatiVe thinking

We have developed a model system implementing 
algorithmically the principles of an autonomous 
cognitive system (Gros, 2005; Gros, 2007). The 
dHan model (dense Homogenous Associative 
Network) exhibits self-generated associative 
thought processes, which we postulate as the 
driving forces for the self-generated dynami-
cal activities. At any given time only a subset 
of neurons is active, for a certain period, with 

the activities of competing neural centers being 
suppressed. Subsequently a different, in general 
partially overlapping group of neurons becomes 
active transiently, such forming an ongoing and 
never ending series of transient neural activ-
ity patterns. This type of neural dynamics, the 
transient-state dynamics, is illustrated in Fig. 3. 
For the mathematical formulation implementing 
these principles we refer to the literature (Gros, 
2005; Gros, 2007).

There are findings from experimental neu-
robiology pointing towards the importance of 
transient-state dynamics (Abeles et al, 1995; 
Kenet et al, 2003), indicating that competition 
and anti-correlation are central organizational 
principles for the neural activity in the brain (Fox 
et al, 2005). The transient plateaus in the level of 
neural activity of a subset of neurons or neural 
ensembles are also termed `states of the mind’ 
(Edelman & Tononi, 2000) or `winning coali-
tions’. The composition of the winning coalition 
changes dynamically from one transient state to 
the subsequent, giving rise to a vast number of 
possible states of the mind. The dHan model is 
therefore an example of a biologically inspired 
approach to cognitive system theory, seeking 
to implement known principles of global brain 
activity, without attempting to reproduce neuro-
biological details.

Figure 3. Transient states. Schematic illustration of a sequence of transiently stable winning coalitions 
of a neural ensemble. The firing state of any given neuron is either close to zero or transiently stable for 
a finite period of time, with relatively short transition periods.
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inPut Recognition

A cognitive system continuously receives sensory 
input containing information about the external 
environment and about the status of its physical 
support unit, its body (see Fig. 1). This flow of 
stimuli competes with the internal, autonomously 
generated transient-state dynamics. There are 
then two time series of events, with no a priori 
connection: The series of subsequently activated 
winning coalitions generated internally and the 
flux of sensory stimuli. The sensory input therefore 
may or may not make a difference. It may or may 
not influence the internal dynamics, it may or may 
not influence the composition of the next winning 
coalition. A primary task of the cognitive system 
is consequently to find out whether this happens 
(Gros & Kaczor, 2008). This is a typical task, we 
term it `input recognition’, for diffusive control. 
We have developed a model, where the interplay 
between the internal dHan dynamics and the flow 

of sensory input is regulated through diffusive 
input recognition (Gros & Kaczor, 2008).

In Fig. 4 the setup of the system is shown. An 
input layer provides an input data stream to a dHan 
layer, which is autonomously active. Every site 
in the dHan layer receives recurrent input from 
the dHan layer and feed-forward signals from the 
input layer. Every site can distinguish between 
these two kinds of inputs and decide which one is 
the dominant driving signal. A site can therefore 
decide by itself, through a local process, whether 
the sensory input had a driving influence in its 
activation process. In this case a signal is sent 
to the diffusive control unit responsible for the 
input recognition, contributing to the activation 
of this control unit. When the activation level 
exceeds a certain threshold a diffusive learning 
signal is released and the links connecting the 
input layer with the dHan layer are modified in 
a Hebbian-like fashion. In this way a non-trivial 
analysis of the input signals is achieved, resulting 

Figure 4. Input prrocessing. The model system  consisting of a dHan (dense and homogeneous associa-
tive network) and an input layer. The input signals are illustrated as raw horizontal and vertical bars. 
The dHan layer is autonomously active, C-I, ..., C-V denoting the possible winning coalitions of sites. 
The input signal competes with the internal activity of the dHan layer. The interconnections input-dHan 
layer are modified during learning, which is activated through an autonomously generated diffusive 
learning signal.
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in an non-linear independent-component analy-
sis (Gros & Kaczor, 2008) and in a mapping of 
statistically independent objects in the input-data 
stream to winning coalitions of the dHan layer. 
For the details we refer to the literature (Gros & 
Kaczor, 2008).

emotional contRol

The diffusive control unit responsible for input 
recognition described above may work either neu-
trally or emotionally. For the setup illustrated in 
Fig. 4, made up just of a single input and a single 
dHan layer, emotional control would be meaning-
less and the input recognition is neutral, viz there 
is no preferred activation level. For a full-fledged 
embedded cognitive system the situation would 
however be different and the same control unit 
might acquire emotional character. The system 
could get ̀ bored’ whenever the input recognition 
would be inactive for a long time (deprivation of 
sensory signals), or `stressed’ whenever it would 
be continuously active (overloaded with sensory 
signals). In either case an additional diffusive 
signal could be released, a reinforcement signal, 
with the aim of decreasing the probability that 
similar situations would come up again in the 
future.

This example, the task of input recognition 
is a task quite generally necessary for cognitive 
systems, whichever the respective structural and 
dynamical organization may be. The mechanisms 
described here, in the context of the model being 
investigated, may therefore be generalized and 
adapted to other approaches and concepts for 
synthetic cognitive systems.

concluSion

The motivational problem of what to do in one’s 
own life lies at the heart of all living. At a high 
and philosophical level this fact is reflected by 

an ongoing and never ending search of human-
ity, the quest for the meaning of life. On a basic 
level it implies that all actions of a living being, 
of a cognitive system, are generated internally, 
and that a thorough understanding of the decision 
mechanisms is paramount for an eventually suc-
cessful realization of artificial cognitive systems. 
Taking inspiration from neurobiological insights, 
we have delineated here a layered framework for 
the motivational drives of an autonomously active 
biological or synthetic cognitive system.

The overall foundation is given by the sur-
vival instinct, algorithmically corresponding to 
the preprogrammed task of keeping the physical 
support unit, the body of the cognitive system, 
functioning and alive. When the basic survival is 
ensured, emotional control takes over. Emotional 
control is, in general, functionally independent 
from the basic need to survive. From the evo-
lutionary point of view the survival instinct is 
needed to guarantee the short-term survival and 
emotional control to increase life-time fitness via 
elaborated behavioral strategies. This separation 
of time scales is reflected algorithmically, with 
emotional control being responsible for meta 
learning, the regulation of slow variables via 
diffusive reinforcement signals. Importantly, the 
solution outlined here for the motivational problem 
can be implemented directly, at least as matter 
of principles, for artificial cognitive systems and 
robots, realizing synthetic emotions.

The synthetic emotions generated via diffusive 
emotional control do not correspond to simulations 
of emotional expressions, as they are investigated 
in the context of robot-human communication, 
but to `true internal emotions’, being generated 
by mechanisms and principles roughly analogous 
to the emotions present in biological cognitive 
systems. A correspondence of the qualia of such 
generated synthetic emotions with the emotions 
of human or non-human animals is however not 
to be expected for the foreseeable future. 

The mechanisms  triggering the release of the 
neuromodulators conveying emotions in mam-
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mals may be either predetermined genetically or 
acquired culturally. Humans may associate the 
play of a violin with joy or with distress, or just 
remain unmoved, there are no marked genetic 
preferences. This implies that there is an extended 
layer of culturally acquired motivational drives, 
as illustrated in Fig. 2, above the survival instinct 
and above the diffusive emotional control. We 
believe that a full implementation of this three-
layered system of motivational drives is a neces-
sary requirement for the eventual realization of 
human-level artificial intelligences and cognitive 
systems and that this goal is to date quite distant 
from the actual status of research.
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key teRmS

Autonomous Cognitive System: Cognitive 
systems are generally autonomous, i.e. self-deter-
mined, setting their own goals. This implies that 
they are not driven, under normal circumstances, 
by external sensory signals. I.e. an autonomous 
cognitive system is not forced to perform a specific 
action by a given sensory stimuli. Autonomy does 
not exclude the possibility to acquire information 
from external teachers, given that internal mecha-
nisms allow an autonomous cognitive system to 
decide whether or not to focus attention  on external 
teaching signals. In terms of a living dynamical 
system an autonomous cognitive system possesses 
a non-trivial and self-sustained dynamics, viz an 
ongoing autonomous dynamical activity.

Biologically Inspired Cognitive System: In 
principle one may attempt to develop artificial 
cognitive systems starting with an empty blue-
print. Biological cognitive systems are at present 
however the only existing real-world autonomous 
cognitive systems we know of, and it makes sense 
to make good use of the general insights obtained 
by neurobiology for the outline of cognitive system 
theory. An example such a paradigmal insight is 
the importance of competitive neural dynamics, 
viz of neural ensembles competing with each 
other trying to form winning coalitions of brain 
regions, suppressing transiently the activity of 
other neural ensembles. Another example is the 
intrinsic connection between diffusive emotional 
control and learning mechanisms involving rein-
forcement signals.

Cognitive System: A cognitive system is an 
abstract identity, consisting of the set of equations 
determining the time-evolution of the internal 

dynamical variables. It needs a physical support 
unit in order to function properly, a datum also 
denoted as ̀ embedded intelligence’. The primary 
task for a cognitive system is to retain functional-
ity in certain environments. For this purpose it 
needs an operational  physical support unit for 
acting and for obtaining sensory information about 
the environment. The cognitive system remains 
operational as long as its physical support unit, 
its body, survives. A cognitive system might be 
either biological (humans and non-human animals) 
or synthetic. Non-trivial cognitive systems are 
capable of learning and of adapting to a changing 
environment. High-level cognitive systems may 
show various degrees of intelligence.

Complex System Theory: Complex system 
theory deals with `complex’ dynamical systems, 
viz with dynamical systems containing a very 
large number of interacting dynamical variables. 
Preeminent examples of complex systems are 
the gen-regulation network at basis of all living, 
self-organizing phase transitions in physics like 
superconductivity and magnetism, and cognitive 
systems, the later being the most sophisticated and 
probably also the least understood of all complex 
dynamical systems.

Diffusive Control: Diffusive control is intrin-
sically related for biological cognitive systems to 
the release of neuromodulators. Neuromodulators 
are generally released in the inter-neural medium, 
from where they physically diffuse, affecting a 
large ensemble of surrounding neurons. The neu-
romodulators do not affect directly the cognitive 
information processing, viz the dynamical state 
of individual neurons. They act as the prime 
agents for transmitting extended signals for meta 
learning. Diffusive control signals come in two 
versions, neutral and emotional. (A) Neutral dif-
fusive control is automatically activated when 
certain conditions are present in the cognitive 
system, irrespectively of the frequency and the 
level of past activations of the diffusive control. 
(B) Emotional diffusive control has a preset pre-
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ferred level of activation frequency and strength. 
Deviation of the preset activity-level results in 
negative reinforcement signals, viz the system 
feels `uneasy’  or `uncomfortable’.

Dynamical System: A dynamical system is a 
set of variables together with a set of rules deter-
mining the time-development of theses variables. 
The time might be either discrete, viz 1,2,3,... or 
continuous. In the latter case the dynamical sys-
tem is governed by a set of differential equations. 
Dynamical system theory is at the heart of all 
natural laws, famous examples being Newton’s law 
of classical mechanics, the Schrödinger equation 
of quantum mechanics and Einstein’s geometric 
theory of gravity, general relativity.

Living Dynamical System: A living dynami-
cal system is a dynamical system containing a 
set of variables denoted `survival variables’. The 
system is defined to be living as long as the value 
of these variables remain inside a certain preset 
range and defined to be dead otherwise. Cogni-
tive systems are instances of living dynamical 
systems and the survival variables correspond 
for the case of a biological cognitive system to 
the heart frequency, the blood pressure, the blood 
sugar level and so on.

Meta Learning: Meta learning and `homeo-
static self-regulation’ are closely related. Both are 
needed for the long-term stability of the cognitive 
system, regulating internal thresholds, learning-
rates, attention fields and so on. They do not af-
fect directly the primary cognitive information 
processing, e.g. they do not change directly the 
firing state of individual neurons, nor do they af-
fect the primary learning, i.e. changes of synaptic 
strengths. The regulation of the sensibility of the 
synaptic plasticities with respect to the pre- and to 
the post-synaptic firing state is, on the other hand, 
a prime task for both meta learning and homeo-
static self-regulation. Homeostatic self-regulation 
is local, always active and present, irrespectively 
of any global signal. Meta learning is, on the other 

hand, triggered by global signals, the diffusive 
control signals, generated by the cognitive system 
itself through distinct sub-components. 

Motivational Problem: Biological cognitive 
systems are `autonomous’, viz they decided by 
themselves what to do. Highly developed cogni-
tive systems, like the one of mammals, regularly 
respond to sensory stimuli and information but 
are generally not driven by the incoming sen-
sory information, i.e. the sensory information 
does not force them to any specific action. The 
motivational problem then deals with the central 
issue of how a highly developed cognitive system 
selects its actions and targets. This is the domain 
of instincts and emotions, even for humans. Note, 
that rational selection of a primary target is impos-
sible, rational and logical reasoning being useful 
only for the pursue of primary targets set by the 
underlying emotional network. Most traditional 
research in artificial intelligence disregards the 
motivational problem, assuming internal primary 
goal selection is non-essential and that explicit 
primary target selection by supervising humans 
is both convenient and sufficient.

Physical Support Unit: Also denoted ̀ body’ 
for biological cognitive systems. Generally it 
can be subdivided into four functional distinct 
components. (A) The component responsible 
for evaluating the time-evolution equations of 
the cognitive system, viz the brain. (B) The ac-
tuators, viz the limbs, responsible for processing 
the output-signals of the cognitive system. (C) 
The sensory organs providing appropriate input 
information on both the external environment 
and on the current status of the physical support 
unit. (D) The modules responsible for keeping the 
other components alive, viz the internal organs. 
Artificial cognitive systems dispose of equivalent 
functional components.

Reinforcement Signal: Reinforcement signals 
can be either positive or negative, i.e. a form of 
reward or punishment. The positive or nega-
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tive consequences of an action, or of a series of 
consecutive actions, are taken to reinforce or to 
suppress the likelihood of selecting the same 
set of actions when confronted with a similar 
problem-setting in the future. A reinforcement 
signal can be generated by a cognitive system 
only when a nominal target outcome is known. 
When this target value is given `by hand’ from 
the outside, viz by an external teacher, one speaks 
of ̀ supervised learning’. When the target value is 
generated internally one speaks of ̀ unsupervised 
learning’. The internal generation of meaningful 
target values constitutes the core of the motiva-
tional problem.

Universal Cognitive System: Simple cogni-
tive systems are mostly ruled by preset stimuli-
reaction rules. E.g. an earthworm will automati-
cally try to meander towards darkness. Universal 

principles, i.e. algorithms applicable to a wide 
range of different environmental settings, become 
however predominant in highly developed cogni-
tive systems. We humans, to give an example, are 
constantly, and most of the time unconsciously 
trying to predict the outcome of actions and 
movements taking place in the world around us, 
even if these outcomes are not directly relevant 
for our intentions at the given time, allowing us to 
extract regularities in the observed processes for 
possible later use. Technically this attitude cor-
responds to a time-series prediction-task which is 
quite universal in its applicability. We use it, e.g., 
to obtain unconsciously knowledge on the ways 
a soccer ball rolls and flies as well as to extract 
from the sentences we listen-to the underlying 
grammatical rules of our mother-tongue.




