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Abstract. Humans dispose of two intertwined information processing pathways,

cognitive information processing via neural firing patterns and diffusive volume

control via neuromodulation. The cognitive information processing in the brain is

traditionally considered to be the prime neural correlate of human intelligence, clin-

ical studies indicate that human emotions intrinsically correlate with the activation

of the neuromodulatory system.

We examine here the question: Why do humans dispose of the diffusive emo-

tional control system? Is this a coincidence, a caprice of nature, perhaps a leftover

of our genetic heritage, or a necessary aspect of any advanced intelligence, being it

biological or synthetic?

We argue here that emotional control is necessary to solve the motivational prob-

lem, viz the selection of short-term utility functions, in the context of an environ-

ment where information, computing power and time constitute scarce resources.

1 Introduction

The vast majority of research in artificial intelligences is devoted to the study of

algorithms, paradigms and philosophical implications of cognitive information pro-

cessing, like conscious reasoning and problem solving [1]. Rarely considered is the

motivational problem - a highly developed AI needs to set and select its own goals

and tasks autonomously.

We believe that it is necessary to consider the motivational problem in the context

of the observation that humans are infused with emotions, possibly to a greater

extend than any other species [2]. Emotions play a very central role in our lives, in

literature and human culture in general. Is this predominance of emotional states a

coincidence, a caprice of nature, perhaps a leftover from times when we were still

‘primitives and brutes’, or perhaps a necessary aspect of any advanced intelligence?
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The motivational problem is about the fundamental conundrum that all living in-

telligences face. From the myriads of options and behavioral strategies it needs to

select a single route of action at any given time. These decisions are to be taken

considering three limited resources, the information disposed of about the present

and the future state of the world, the time available to take the decision and the com-

putational power of its supporting hard- or wetware. Here we argue that emotional

control is deeply entwined with both short- and long-term decision making and al-

lows to compute in real time approximate solutions to the motivational problem.

When considering the relation between emotional control and the motivational

problem one needs to discuss the nature of non-biological intelligences for which

this issue is of relevance. We believe that, in the long term, there will be two major

developmental tracks in AI research - focused artificial intelligences and organis-

mic universal synthetic intelligences. We believe that the emotional control consti-

tutes an inner core functionality for any universal intelligence and not a secondary

addendum.

2 Intelligent Intelligences

We start with some terminology and a loose categorization of possible forms of

intelligence.

Focused Artificial Intelligences. We will use the term focused AI for what consti-

tutes today’s mainstream research focus in artificial intelligence and robotics. These

are highly successful and highly specialized algorithmic problem solvers like the

chess playing program Deep Blue [8], the DARPA-like autonomous car driving sys-

tems [9] and Jeopardy software champion Watson [10].

Focused artificial intelligences are presently the only type of artificial intelli-

gences suitable for commercial and real-world applications. In the vast majority

of today’s application scenarios a focused intelligence is exactly what is needed, a

reliable and highly efficient solution solver or robotic controller.

Focused AIs may be able to adapt to changing demands and have some forms of

built-in, application specific learning capabilities. They are however characterized

by two features.

• Domain specificity. A chess playing software is not able to steer a car. It is much

more efficient to develop two domain specific softwares, one for chess and one

for driving, than to develop a common platform.

• Maximal a priori information. The performance real-world applications are gen-

eraly greatly boosted when incorporating a maximal amount of a priori infor-

mation into the architecture. Deep Blue contains the compressed knowledge of

hundreds of years of human chess playing, the DARPA racing car software the

Newton laws of motion and friction, the algorithms do not need to discover and

acquire this knowledge from proper experiences.

Focused AI sees a very rapid development, increasingly driven by commercial ap-

plications. They will become extremely powerful within the next decades and it is
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questionable whether alternative forms of intelligences, whenever the may be avail-

able in the future, will ever be able to compete with focused AI on economical

grounds. It may very well be, though difficult to foretell, that focused AI will al-

ways yield a greater return on investment than more general types of intelligences

with their motivational issues.

Synthetic Intelligences. The term ‘artificial intelligence’ has been used and abused

in myriads of ways over the past decades. It is standardly in use for mainstream AI

research, or focused AI as described above. We will use here the term synthetic

intelligence for alternative forms of intelligences, distinct from todays mainstream

route of AI and robotics research.

Universal Intelligences. It is quite generally accepted that the human brain is an

exemplification of ‘universal’ or ‘generic’ intelligence. The same wetware and neu-

ral circuitry can be used in many settings - there are no new brain protuberances

being formed when a child learns walking, speaking, operating his fairy-tale player

or the alphabet at elementary school. There are parts of the brain more devoted to vi-

sual, auditory or linguistic processing, but rewiring of the distinct incoming sensory

data streams will lead to reorganization processes of the respective cortical neural

circuitry allowing it to adapt to new tasks and domains.

The human brain is extremely adaptive, a skilled car driver will experience, to a

certain extend, its car as an extension of his own body. A new brain-computer inter-

ference, when available in the future, will be integrated and treated as a new sensory

organ, on equal footing with the biological pre-existing senses. Human intelligence

is to a large extend not domain specific, its defining trait is universality.

Organismic Intelligences. An ‘organismic intelligence’ is a real-world or simu-

lated robotic system which has the task to survive. It is denoted organismic since

the survival task is generically formulated as the task to keep the support unit, the

body, functional [3, 4].

Humans are examples of organismic intelligences. An organismic synthetic in-

telligence may be universal, but not necessarily. The term ‘organismic’ is not to be

confused with ‘embodiment’. Embodied AI deals with the question whether consid-

ering the physical functionalities of robots and bodies is helpful, of even essential,

for the understanding of cognitive information processing and intelligence in gen-

eral [5, 6, 7].

Cognitive System. The term ‘cognitive system’ is used in various ways in the lit-

erature, mostly as a synonym for a cognitive architecture, viz for an information

processing domain-specific software. I like to reserve the term cognitive system

for an intelligence which is both universal and organismic, may it be biological or

synthetic.

Humans are biological cognitive systems in this sense and most people would

expect, one can however not foretell with certainty, that ‘true’ or ‘human level AI’

would eventually be realized as synthetic cognitive systems. It is an open and unre-

solved questions, as a matter of principle, whether forms of human level AI which

are not cognitive systems in above sense, are possible at all.
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Fig. 1 Illustration of the

(hypothetical) complexity

conundrum, which regards

the speculation that the men-

tal capabilities of biological

or synthetic intelligences

(right) might be system-

atically too low to fully

understand the complexity

of their own supporting cog-

nitive architectures (left).

In this case the singularity

scenario would be void.
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Human Level Artificial Intelligences. An ultimate goal of research in artificial

and synthetic intelligences is to come up with organizational principles for intel-

ligences of human or higher level. How and when this goal will be achieved is

presently in the air, a few aspects will be discussed in the next section. This has not

precluded an abundance of proposals on how to test for human-level intelligences,

like the Turing test [11] or the capability to perform scientific research. Some people

believe that human intelligence will have been achieved when we do not notice it.

The Complexity Conundrum. Regarding the issue when and how humanity will

develop human level intelligences we discuss here shortly the possible occurance of

a ‘complexity paradox’, for which we will use the term complexity conundrum.

Every intelligence arises form a highly organized soft- or wetware. One may as-

sume, though this is presently nothing more than a working hypothesis, that more

and more complex brains and software architectures are needed for higher and

higher intelligences. The question is than, whether a brain with a certain degree

of complexity will give raise to a level on intelligence capable to understand its own

wetware, compare Fig. 1. It may be, as a matter of principle, that the level of com-

plexity a certain level of intelligence is a able to handle is always below the level of

complexity of its own supporting architecture.

This is really a handwaving and rather philosophical question with many open

ends. Nevertheless one may speculate whether the apparent difficulties of present-

day neuroscience research to carve out the overall working principles of the brain

may be in part due to a complexity conundrum. Equivalently, considering the suc-

cesses and the failures of over half a century of AI research, our present near-to

complete ignorance of the overall architectural principles necessary for the develop-

ment of eventual human level AI may be routed similarly in either a soft or a strong

version of the complexity conundrum.

The complexity conundrum would however not, even if true, preclude humanity

to develop human level artificial or synthetic intelligences in the end. As a last re-

sort one may proceed by trial and error, viz using evolutionary algorithms, or via

brute force reverse engineering, if feasible. The notion of a complexity conundrum

is relevant also to the popular concept of a singularity, a postulated runaway self
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Fig. 2 Mainstream architecture for a hypothetical human-level artificial intelligence. The

motivational problem would be delegated to a secondary level responsible of selecting ap-

propriate modules for problems and tasks which are not autonomously generated but pre-

sumably presented to the AI by human supervisors. Higher cognitive states like conscious-

ness are sometimes postulated to emerge spontaneously with raising complexity from self-

organizational principles, emotional control is generically regarded as a later-stage add-on, if

at all.

improving circle of advanced intelligences [12, 13]. The complexity conundrum,

if existing in any form, would render the notion of a singularity void, as it would

presumably apply to intelligences at all levels.

3 Routes to Intelligence

There are presently no roadmaps, either individually proposed or generally ac-

cepted, for research and development plans leading to the ultimate goal of highly

advanced intelligences. Nevertheless there are two main, conceptually distinct,

approaches.

3.1 From Focused to General Intelligence?

The vast majority of present-day research efforts is devoted to the development of

high-performing focused intelligences. It is to be expected that we will see advances,

within the next decades, along this roadmap for hundreds and many more applica-

tion domains.

There is no generally accepted blueprint on how to go beyond focused intelli-

gences, a possible scenario is presented in Fig. 2. A logical next step would be to

hook up a vast bank of specialized algorithms, the focused intelligences, adding a

second layer responsible for switching between them. This second layer would then

select the algorithm most appropriate for the problem at hand and could contain

suitable learning capabilities.

This kind of selection layer constitutes a placebo for the motivational problem,

the architecture presented in Fig. 2 would not be able to autonomously generate its

own goals. This is however not a drawback for industrial and for the vast majority
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Fig. 3 Architecture for biologically inspired universal synthetic intelligences, viz of cogni-

tive systems. The basis would be given by a relatively small number of genetically encode

universal operating principles, with emotional control being central for the further devel-

opment through self-organized learning processes. How consciousness would arise in this

setting is not known presently, it is however regarded as a prerequisite for higher intellectual

capabilities such as abstract reasoning and knowledge specialization.

of real-world applications, for which the artificial intelligence is expected just to

efficiently solve problems and tasks presented to it by human users and supervisors.

In a third step it is sometimes expected that cognitive architectures may develop

spontaneously consciousness with raising levels of complexity. This speculation,

particularly popular with science-fiction media, is presently void of any supporting

or contrarian scientific basis [14, 15]. Interesting is the tendency of mainstream AI

to discuss emotions as secondary features, mostly useful to facilitate human-robot

interactions [16]. Emotions are generically not attributed a central role in cognitive

architectures withing mainstream AI.

One could imagine that the kind of cognitive architecture presented in Fig. 2 ap-

proaches, with the expansion of its basis of focused intelligences, step by step the

goal of a universal intelligence able to handle nearly any conceivable situation. It

is unclear however which will be the pace of progress towards this goal. It may be

that progress will be initially very fast, slowing then however down substantially

when artificial intelligence with elevated levels of intellectual capabilities have been

successfully developed. This kind of incremental slowing-down is not uncommon

for the pace of scientific progress in general. Life expectancy has been growing lin-

early, to give an example, over the last two centuries. The growth in life expectancy

is extremely steady and still linear nowadays, despite very rapidly growing med-

ical research efforts. Not only in economics, but also in science there are generic

decreasing returns on growing investments. Similarly, vast increases in the number

and in the power of the underlying array of focused intelligences may, in the end,

lead to only marginal advances towards universality.
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3.2 Universal Learning Systems

The only real-world existing example of an advanced cognitive system is the mam-

malian brain. It is hence reasonable to consider biologically inspired cognitive ar-

chitectures. Instead of reverse engineering the human brain, one tries then to deeply

understand the general working principles of the human brain.

There are good arguments that self-organization and general working principles

are indeed dominant driving forces both for the development of the brain and for

its ongoing functionality [17, 18]. Due to the small number of genes in the human

genome, with every gene encoding only a single protein, direct genetic encoding

of specific neural algorithms has either to be absent all together in the brain or be

limited to only a very small number of vitally important features.

It is hence plausible that a finite number of working principles, possibly as small

as a few hundred, may be enough for a basic understanding of the human brain,

with higher levels of complexity arising through self-organization. Two examples

for general principles are ‘slowness’ [19] for view-invariant object recognition and

‘universal prediction tasks’ [3] for the autonomous generation of abstract concepts.

Universality, in the form of operating principles, lies therefore at the basis of

highly developed cognitive systems, compare Fig. 3. This is in stark contrast to

mainstream AI, where universality is regarded as the long-term goal, to be reached

when starting from advanced focused intelligences.

One of the genetically encoded control mechanisms at the basis of a cognitive

system is emotional control, which we will discuss in more detail in the next section.

Emotional control is vitally important for the functioning of a universal learning

system, and not a secondary feature which may be added at a later stage.

• Learning. In the brain two dominant learning mechanisms are known. Hebbian-

type synaptic plasticity which is both sub-conscious and automatic, and reward-

induced learning, with the rewards being generated endogenously through the

neuromodulatory control system, the later being closely associated with the ex-

perience of motions.

• Goal selection. Advanced cognitive systems are organismic and hence need to

constantly select their short- and long term goals autonomously, with emotional

weighing of action alternatives playing a central role.

It is not a coincidence, that the emotional control system is relevant for above two

functionalities, which are deeply inter-dependent. There can be no efficient goal

selection without learning from successes and failure, viz without reward induced

learning processes.

4 Emotional Control

Emotions are neurobiologically not yet precisely defined. There are however sub-

stantial indications from clinical studies that emotions are intrinsically related to

either the tonic or the phasic activation of the neuromodulatory system [22]. For

this reason we will denote the internal control circuit involving neuromodulation,
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sensory data input stream

motor action output

autonomous

Fig. 4 Fast and slow variables have distinct functionalities in the brain, with the operating

modus (mood) being set by the slow variables and the actual cognitive processes, which

are either input induced or autonomous [20, 21], being performed by the fast variables. The

adaption of the slow variables (metalearning) is the task of the diffusive neuromodulatory

system (emotional control).

compare Fig. 4, emotional control. We will also use the expression diffusive emo-

tional control since neuromodulation acts as a diffusive volume effect.

One needs to differentiate between the functionality of emotions in the con-

text of cognitive system theory, discussed here, and the experience (the qualia)

of emotions. It is presently an open debate whether the body is necessary for

the experience of emotions and moods, which may be induced by the propri-

oceptual sensing of secondary bodily reactions [23]. The origin of emotional

experience is not subject of our deliberations.

4.1 Neuromodulation and Metalearning

Animals dispose of a range of operating modi, which one may identify with moods

or emotional states. A typical example of a set of two complementary states is ex-

ploitation vs. exploration: When exploitive the animal is focused, concentrated on a

given task and decisive. In the explorative state the animal is curious, easily dis-

tracted and prone to learn about new aspects of his environment. These moods

are induced by the tonic, respectively the phasic activation of the neuromodula-

tory system [24], the main agents being Dopamine, Serotonin, Norepinephrine and

Acetylcholine.

When using the language of dynamical system theory we can identify the task of

the neuromodulatory system with metalearning [25]. Any complex system disposes

of processes progressing on distinct time scales. There may be in principle a wide
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range of time scales, the simplest classification is to consider slow and fast processes

driven respectively by slow and fast variables.

Cognitive information processing is performed in the brain through neural fir-

ing and synaptic plasticity, corresponding to the fast variables in terms of dynam-

ical system theory [3]. The general operating modus of the neural circuitry, like

the susceptibility to stimuli, the value of neural thresholds or the pace of synaptic

plasticities are slow degrees of freedom. The adaption of slow degrees of freedom to

changing tasks is the realm of metalearning, which in the brain is preformed through

the neuromodulatory system, compare Fig. 4.

Metalearning is a necessary component of any complex dynamical system and

hence also for any evolved synthetic or biological intelligence. It is therefore not sur-

prising that the human brain disposes of a suitable mechanism. Metalearning is also

intrinsically diffusive, as it involves the modulation not of individual slow variables,

metalearning is about the modulation of the operating modus of entire dynamical

subsystems. It is hence logical that the metalearning circuitry of the brain involves

neuromodulatory neurons which disperse their respective neuromodulators, when

activated, over large cortical or subcortical areas, modulating the behavior of down-

stream neural populations in large volumes.

An interesting and important question regards the guiding principles for meta-

learning. An animal has at its disposal a range of distinct behaviors and moods,

foraging, social interaction, repose, exploration, and so on. Any cognitive system

is hence faced with a fundamental time allocation problem, what to do over the

course of the day. The strategy will in general not be to maximize time allocation

of one type of behavior, say foraging, at the expense of all others, but to seek an

equilibrated distribution of behaviors. This guiding principle of metalearning has

been denoted ‘polyhomeostatic optimization’ [26].

4.2 Emotions and the Motivational Problem

It is presently unclear what distinguishes metalearning processes which are expe-

rienced as emotional from those which are unconscious and may hence be termed

‘neutral’. It has been proposed that the difference may be that emotional control

has a preferred level of activation, neutral control not [27, 28]. When angry one

generally tries behavioral strategies aimed at reducing the level of angriness and

internal rewards are generated when successful. In this view emotional control is in-

trinsically related to behavior and learning, in agreement with neuro-psychological

observations [24, 2, 29].

Emotional states induce, quite generically, problem solving strategies. The cog-

nitive system either tries to stay in its present mood, in case it is associated with

positive internal rewards, or looks for ways to remove the causes for its current

emotional state, in case it is associated with negative internal rewards. Emotional

control hence represents a way, realized in real-world intelligences, to solve the mo-

tivational problem, determining the utility function the intelligence tries to optimize

at any given point of time.
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A much discussed alternative to emotional control is straightforward maximiza-

tion of an overall utility function [30]. This paradigm is highly successful when

applied to limited and specialized tasks, like playing chess, and is as such important

for any advanced intelligence. Indeed we argue that emotional control determines

the steady-state utility function. As an example consider playing chess. Your util-

ity function may either consist in trying to beat the opponent chess player or to be

defeated by your opponent (in a non-so-evident way) when playing together with

your son or daughter. These kinds of utility functions are shaped in real life by our

emotional control mechanisms.

It remains however doubtful whether it would be possible to formulate an overall,

viz a long-term utility function for a universal intelligence and to compute in real

time its gradients. Even advanced hyper-intelligences will dispose of only an expo-

nentially small knowledge about the present and the future state of the world, pre-

diction tasks and information acquisition is generically NP-hard (non-polynomial)

[31, 32, 33]. Time and computing power (however large it may be) will forever

remain, relatively seen, scarce resources. It is hence likely that advanced artificial

intelligences will be endowed with ‘true’ synthetic emotions, the perspective of a

hyper-intelligent robot waiting emotionless in its corner, until its human boss calls

him to duty, seems implausible [34, 35, 36, 37].

Any advanced intelligence needs to be a twofold universal learning system. The

intelligent system needs to be on one side able to acquire any kind of information

in a wide range of possible environments and on the other side to determine au-

tonomously what to learn, viz solve the time allocation problem. The fact that both

facets of learning are regulated through diffusive emotional control in existing ad-

vanced intelligences suggests that emotional control may be a conditio sine qua non

for any, real-world or synthetic, universal intelligence.

5 Hyper-Emotional Trans-Human Intelligences?

Looking around at the species on our planet one may surmise that increasing cog-

nitive capabilities go hand in hand with rising complexity and predominance of

emotional states [2]. The rational is very straightforward. An animal with say only

two behavioral patterns at its disposition, e.g. sleeping and foraging, does not need

dozens of moods and emotions, in contrast to animals with a vast repertoire of po-

tentially complex behaviors.

This observation is consistent with the theory developed here, that metalearning

as a diffusive emotional control system is a necessary component for any synthetic

and biological intelligence. It is also plausible that the complexity the metalearning

control needs to increase adequately with increasing cognitive capacities.

It is hence amusing to speculate, whether synthetic intelligences with higher

and higher cognitive capabilities may also become progressively emotional. Super-

human intelligences would then also be hyper-emotional. An outlook in stark

contrast to the mainstream view of hyper-rational robots, which presumes that

emotional states will be later-stage addendums to high performing artificial

intelligences.
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