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Conserved dynamical systems are generally considered to be critical. We study a class of critical

routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic

limit. The information flow is conserved for these routing models and governed by cyclic

attractors. We consider two classes of information flow, Markovian routing without memory and

vertex routing involving a one-step routing memory. Investigating the respective cycle length

distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle

length, as a function of the number of vertices, and a sub-polynomial growth for the overall

number of cycles. When observing experimentally a real-world dynamical system one normally

samples stochastically its phase space. The number and the length of the attractors are then

weighted by the size of their respective basins of attraction. This situation is equivalent, for theory

studies, to “on the fly” generation of the dynamical transition probabilities. For the case of vertex

routing models, we find in this case power law scaling for the weighted average length of

attractors, for both conserved routing models. These results show that the critical dynamical

systems are generically not scale-invariant but may show power-law scaling when sampled

stochastically. It is hence important to distinguish between intrinsic properties of a critical

dynamical system and its behavior that one would observe when randomly probing its phase space.
VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773003]

Power law scaling is observed in many real-world phe-
nomena, like neural avalanches in the brain. In statistical
physics, all critical systems, at the point of a second-order
phase transition, show power law scaling. Power law scal-
ing is hence commonly attributed to criticality, but it is
an open question to which extend this relation is satisfied
for complex dynamical systems. There is, in addition, a
difference between the distribution an observer may be
able to sample and the exact properties of the underlying
dynamical system. An observer will sample in general the
number and the size of attractors as weighted by size of
their respective basins of attraction. Here, we investigate
the critical models for information routing and show that
the number and the length of attractors does not obey
power law scaling, while, on the other hand, an external
observer, sampling the weighted distribution, would find
power law scaling. Hence when drawing conclusions
from experimentally observed power law scaling one
needs to take into account the implicitly employed sam-
pling procedures.

I. INTRODUCTION

The propagation of perturbations is a central notion in dy-

namical system theory. One speaks of a frozen state when a

perturbation tends to die out, on the average, during the course

of time evolution and of a chaotic state when perturbations

tend to spread out.1,2 A given class of dynamical systems may

change from frozen to chaotic behavior as a function of pa-

rameters, being critical right at the transition point.

At criticality, information is on the average conserved,3

as one can regard a perturbation of a state as the information

about the persistence of small differences. A well studied

example of a critical dynamical system is the Kauffman net

with connectivity K¼ 2, an example of a random Boolean

network.4–6 In statistical mechanics, critical systems are

generically scale invariant,7 and it has been widely assumed

that this statement would also hold for critical dynamical

systems. Indeed, numerical simulations seemed to support

scaling in critical Boolean networks, notably a
ffiffiffiffi
N

p
scaling

for the number of attractors as a function of the number of

vertices N had been proposed.4,5

An important clarification then came with the exact

proof that the number of attractors actually grows faster than

any power of N, and that the results of the numerical simula-

tions suffered from systematic undersampling of phase

space.8 It could be shown, on the other side, that the number

of frozen and the number of relevant nodes in a large class of

critical Boolean networks obey power law scaling.9 The sit-

uation is then that certain properties of critical dynamical

systems, at least for the case of random Boolean networks,

obey power law scaling while others do not. It is hence im-

portant to investigate the possible occurrence of scaling in

different classes of dynamical systems.

We study a class of dynamical systems describing the

transport of conserved quantities on network structures that

is quantities which cannot be multiplied or separated into
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smaller parts during the transport between network nodes.

We denote such a process a routing process, since only one

node is active at each time step, the one containing the trans-

mitted quantity. A routing process can be seen alternatively

as the transport of perturbations between network elements

and as such represents a critical process because the pertur-

bation neither spreads out through the entire network nor

does it die out. A routing process initiated from a given net-

work node will eventually follow a limiting cycle, thus the

total number of nodes affected by the perturbation will be a

finite fraction of the whole network. Hence, a routing process

satisfies the conditions needed for it to be considered as a

critical dynamical process.10

Transport on networks, such as the spreading of rumors11

and diseases12 in social networks or the flow of capital in fi-

nancial networks13 has been studied intensively, indeed trans-

port constitutes a basic process in biology quite in general,14

as well as in sociology and technical applications. In many

cases, the quantity transported is not conserved, e.g., when

considering the spreading of rumors in social networks. Rout-

ing processes, investigated here, model the transport of a con-

served quantity, like conserved information packages.

Information packages are sent from node to node and are

routed at every vertex, as illustrated in Fig. 1. A routing pro-

cess eventually ends up in one of the cyclic attractors, the

members of the attractors benefiting hence from a continuous

flow of information arriving from the respective basins of

attraction. We have shown previously that the geometric

arrangement of the attractors on the network gives rise in the

thermodynamic limit to a non-trivial distribution for the infor-

mation centrality, which measures the number of attractors

intersecting at a given vertex.15

We present here the solution for two types of routing

models, Markovian routing in the absence of a routing

memory and vertex routing in the presence of an one-step

memory. The solutions are asymptotically exact in the ther-

modynamic limit N ! 1, they can be evaluated for large

networks containing thousands to millions of sites. We pres-

ent results for the scaling behavior of the overall number of

attractors and for the mean of the cycle length distribution.

We find that the number of cycles increases as logðNÞ and

that the mean cycle length scales like
ffiffiffiffi
N

p
=logðNÞ and

N=logðNÞ, respectively, for the model without and with rout-

ing memory.

We also derive rigorous results for the case of stochastic

sampling of phase space, which yields a cycle length distri-

bution weighted by the size of the respective basins of attrac-

tion. This kind of “on the fly” sampling is generically

equivalent to an experimental observation of a real-world dy-

namical system. We find power law scaling for on-the-fly

sampling, logarithmic corrections are absent. We conclude

that real-world investigations of scaling in complex dynami-

cal systems, like the brain, need to be interpreted carefully.

II. MODELS

The two classes of models we consider differ with

respect to the absence/presence of a routing memory. The

phase space volume X is, respectively, linear and quadratic

in the number of vertices N.

• For the Markovian model, the selection of the next active

vertex is independent of the previous state.16 At every

point in time only one vertex is active, the vertex with the

information package. The phase space is hence identical

with the collection of vertices; X ¼ N;
• For the vertex routing model, the phase space is given by

the collection of directed links; X ¼ NðN À 1Þ. At every
point in time one directed link is active, the link currently

transporting the information package, compare Fig. 1.

In both setups the routing of information packages is

realized through static routing tables. For every incoming

edge the routing table specifies an allowed outgoing edge. A

vertex k will transmit an information package, which was

received from a vertex j, to a specific neighboring vertex i.
The vertex routing table T̂ corresponds to a tensor of binary

elements Tikj ¼ ðT̂Þikj 2 f0; 1g,

Tikj ¼
(
0 no routing allowed

1 routing from ~ejk to~eki
; (1)

where ~ejk denotes a directed edge from vertex j to vertex k.
An example of a routing table for a four-site network is pre-

sented in Fig. 1. In Fig. 1(a), allowed routing paths are color

coded and mapped to a four-site network. The complete

phase space of this network is obtained by representing each

edge (Fig. 1(b)) as a node in an iterated graph which is

shown in Fig. 1(c). Here, each node corresponds to a same

colored and numbered edge shown in Fig. 1(b). In Fig. 1(d),

we show again a single realization of routing tables, but now

in the iterated phase space graph. The edges of the phase

space graph shown correspond to allowed routing directions,

that is, to non-zero entries of the routing table T̂ .
We consider here critical models, viz., models where the

number of information packages is conserved. When the

FIG. 1. Vertex routing dynamics for a N¼ 4 complete graph (a) A realiza-

tion of the routing tables. Routing through the first vertex follows

T312 ¼ T213 ¼ T214 ¼ 1, with all other Ti1j vanishing. There are three cyclic

attractors, namely (123), (243), and (1342). (b) Enumeration of all N(N –

1)¼ 12 directed edges, the phase-space elements. (c) The corresponding

phase-space graph. (d) The same realization of the routing table as in (a),

now in terms of the phase-space graph.
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information is received along edge~ejk, it can hence be trans-

mitted along only one outgoing edge~eki,

X

i

Tikj ¼ 1;
X

ij

Tikj ¼ zk; (2)

the non-zero entries of the routing table are drawn randomly.

Here, zk is the degree of vertex k, which is N – 1 for fully

connected networks considered here. For the Markovian

model, the routing table Tikj is independent of j, that is, rout-
ing depends only on the node which received the information

package and not on the direction along the information was

received.

III. CYCLE LENGTH DISTRIBUTION

The dynamics consists of random walks through config-

uration space, as illustrated in Fig. 2. One can hence adapt

the considerations,2 used for solving the Kauffman network

for large connectivity K ! 1, in order to solve the vertex

routing model analytically. In addition to the previously

derived expression for cycle length distribution in the case of

the Markovian model,15 we present here the solution of the

vertex routing model.

The general expression for the average number of cycles

hCLi of length L is given by

hCLiNðrÞ ¼
NðN À 1Þr

LðN À 1Þrþ1
qrðt ¼ LÀ 1Þ; (3)

where r¼ 0 for the Markovian model and r¼ 1 for the vertex

routing model. Here, the factor 1/L cancels overcounting of a

cycle of length L, while the factor NðN À 1Þr is the number

of phase space elements, that is, the number of possible start-

ing elements. The factor 1=ðN À 1Þrþ1
gives the probability

to close the cycle exactly at the starting phase space element.

For the Markovian model the probability to close the cycle

at the starting node is inversely proportional to the number

of neighbors, whereas in the vertex routing model this proba-

bility is inversely proportional to the squared number of

neighbors as the initial edge has to be matched for closing

the path (see Fig. 2). The qrðt ¼ LÀ 1Þ is the probability

that a path containing L nodes is still open. At a time step

t¼ 0, 1,…, we have already visited t nodes. Thus, a probabil-
ity that the next node in the sequence was already visited is

t/(N – 1). For the trajectory to enter a cycle, the routing has

to retrace the existing path. The probability for this to happen

is 1=ðN À 1Þr. The relative probability of closing the path at

next time step is then qrðtÞ ¼ t=ðN À 1Þrþ1
.

The probability of still having an open path after tþ 1

steps is

qrðtþ 1Þ ¼ qrðtÞð1À qrðtÞÞ: (4)

Expanding the equation till the term qrð1Þ ¼ 1 and substitut-

ing the expression for relative probability one obtains

qrðtÞ ¼
ððN À 1Þrþ1 À 1Þ!

ðN À 1Þðrþ1ÞðtÀ1ÞððN À 1Þrþ1 À tÞ!
: (5)

Substituting Eq. (5) in Eq. (3) for the Markovian model,

given by r¼ 0, one finds

hCLimðNÞ ¼
N!

LðN À 1ÞLðN À LÞ!
(6)

for the average number of cycles of length L. For the vertex

routing model, given by r¼ 1, the average number of cycles

is

hCLivðNÞ ¼
NððN À 1Þ2Þ!

LðN À 1Þ2LÀ1ððN À 1Þ2 þ 1À LÞ!
: (7)

Note that for the Markovian model the cycle length L falls

within a range f2;Ng, while L 2 f2; ðN À 1Þ2 þ 1g for the

vertex routing model.

Relation (7) is an approximation to the average number

of cycles as it does not take into account corrections for

self intersecting paths. These corrections drop, however, as

1/ N and can be neglected in the thermodynamic limit. Fur-

thermore, the graph of the phase space elements (see Fig.

1(c)) is not fully connected and thus not Hamiltonian for ar-

bitrary network size N, which means that cycle visiting ev-

ery element of the phase space do in general not exist.

Formulas (6) and (7) are based on a mapping to random

maps and can be generalized to the case of routing on NK
networks.

The probability of observing a cycle of length L is

obtained by dividing the average number of cycles of length

L from Eqs. (6) and (7) by the total number of cycles in a sin-

gle realization of the routing table which is given as

hniv;m ¼
X

L

hCLiv;m :

We denote with

qm;vðL;NÞ;
X

L

qm;vðL;NÞ ¼ 1

the normalized cycle length distributions for the Markovian

(m) and for the vertex routing model (v), Note that substitut-

ing N by ðN À 1Þ2 þ 1 in Eq. (6) one obtains for large N the

approximate scaling relation

FIG. 2. Random walks through configuration space for the Markovian model

(left) and for the vertex routing model (right). In order to find an attractor in-

dependent of the size of their basins of attraction (light color) one needs to

close the path at the respective starting points. The probability to find a

given attractor is, on the other side, proportional to the size of its basin of

attraction for stochastic ‘on the fly’ sampling of phase space.
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hCLivðNÞ $ hCLimððN À 1Þ2 þ 1Þ (8)

between the number of cycles of the vertex routing and the

Markovian model, hCLiv and hCLim.

IV. RESULTS

The analytic expressions (6) and (7) for the number of

attractors are valid for quenched dynamics,2 viz., for fixed

routing tables. One can, in addition, evaluate the number of

cycles obtained when randomly sampling phase space, which

corresponds to generating the routing tables on the fly. The

corresponding results will be discussed in Sec. IVB.

A. Quenched dynamics

Evaluating numerically the number of cycles (6) and (7)

we find, see inset of Fig. 3, that the total number of attractors

hniv;m ¼
X

L

hCLiv;m (9)

grows logarithmically, as a function of phase space volume

X. This result is consistent with a direct evaluation of the

number of attractors for random maps.17 The total number of

cycles hence grows slower than any polynomial of the num-

ber of vertices N, in contrast to critical Kauffman models,

where it grows faster than any power of N.8

The normalized cycle length distributions qv;mðLÞ ¼
hCLiv;m=hniv;m thus scale as 1=logðXÞ, due to the divisor

hniv;m. The rescaled distributions logðXÞqv;mðLÞ approach the

thermodynamic limit rapidly, compare Fig. 3. For small

cycle lengths L, the limiting functional form of the rescaled

distributions is 2/L, while for large L ! Lmax it falls off as

ð1À L=LmaxÞðLÀLmaxÀ1=2Þ
eÀL. The limiting behavior of

logðXÞqv;mðLÞ is identical for both models, due to the inter-

model scaling relation (8).

The total cycle length, viz., the combined length of all

cyclic attractors present for a given system size N, is on the

average

hTiv;m ¼
X

L

LhCLiv;m : (10)

The total cycle length follows a polynomial growth as the

function of phase space volume X (see the inset of Fig. 3).

This algebraic dependence of the total cycle length can be

obtained analytically by generalizing the analysis17 for the

N ! 1 limiting behavior of the mean cycle length (9) to

hTiv;m.
The determination of the scaling behavior is somewhat

more subtle for the mean cycle length (see Fig. 4).

hLiv;m ¼
hTiv;m
hniv;m

¼
X

L

Lqv;mðLÞ: (11)

We find that the functional dependence on the phase space

volume is best reproduced by aþ b
ffiffiffiffi
X

p
=logðXÞ þ c=logðXÞ,

where a, b, c are free parameters. This assumption perfectly

fits mean cycle length, whereas assuming a power law a0 þ
b0Xc0 leads to a worse fit of the mean cycle length for the

case of quenched dynamics; the opposite will hold in the

case of stochastic sampling of phase space. This dependence

is obtained by keeping the fastest growing terms of mean

cycle length as X ! 1. Note that a, and, respectively, a0,
are finite size corrections not obtainable when evaluating

analytically the scaling of Eqs. (9) and (10) separately. Inter-

estingly, log-corrections to power law scaling have been

studied also in sandpile models at the upper critical dimen-

sion20 and in epidemic percolation.21 An overview of the

obtained scaling relations is given in Table I, where

FIG. 3. The cycle length distributions qvðLÞ, rescaled by logðXÞ, for the ver-
tex routing model. The dashed line, 2/ L, represents the large- N and small-

L limiting behavior. In the inset two quantities are plotted as a function of

the phase space volume X. The average number of cycles hni (see Eq. (9),

filled blue circles, log-linear plot) and the expected total cycle length hTi
(see Eq. (10), green filled diamonds, log-log plot). Also included are fits

using aþ b lnX (red dashed line), with a¼ –0.345(3) and b¼ 0.4988(2),

and using a0 þ b0
ffiffiffiffi
X

p
(black dashed line) with a0 ¼ À0:3311ð5Þ and

b0 ¼ 1:253316 2 Á 10À7. The coefficient of determination is R2 ¼ 1:0 in

both cases, within the numerical precision.

FIG. 4. Log-log plot, as a function of the phase space volume X, of the mean

cycle lengths hLiv;~v , see Eq. (11), for the vertex routing with quenched dynam-

ics (hLiv, blue circles) and the vertex routing with on the fly dynamics (hLi~v,
green diamonds). The dotted and dashed lines are fits using aþ b

ffiffiffiffi
X

p
=logðXÞ

þ c=logðXÞ and a0 þ b0Xc0 , respectively, with a¼ 8.1(8), b¼ 2.6035(9), c¼ –

69(9), and a0 ¼ 1:3319ð3Þ; b0 ¼ 0:6276 2 Á 10À6; c0 ¼ 0:56 9 Á 10À8. The

coefficient of determination is R2 ¼ 1:0 in both cases, within the numerical

precision.

013106-4 Marković, Gros, and Schuelein Chaos 23, 013106 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
141.2.247.147 On: Fri, 20 Mar 2015 12:56:10



“quenched dynamics” denotes the results for quenched distri-

butions of routing tables (exact result). Note that in Figs. 3

and 4 we present only the data for the vertex routing model

as it completely overlaps for large phase spaces X, due to the

scaling (8), with the results for the Markovian model.

B. Stochastic sampling of phase space

In addition to working with predetermined (quenched)

vertex routing tables one can generate dynamics “on the fly”

without explicitly creating initially routing tables for all ver-

tices of the network. For this kind of dynamics, which corre-

spond to a stochastic sampling of phase space, a routing for a

given vertex is selected only when the trajectory visits this

vertex. A cyclic attractor is then found when one state of the

phase space (edge or node) is visited more then once. The

probability to find a cycle is hence weighted by the size of its

basin of attraction.

The probability of observing a closed cycle of length L
in a randomly generated path of length t after a total number

of t routing steps is

pðLj tÞ ¼ HðtÀ LÞHðLÀ 2Þ
tÀ 1

; (12)

where HðxÞ is the Heaviside step function with Hð0Þ ¼ 1.

The joint probability distribution P(L, t) is given as

PðL; tÞ ¼ pðLj tÞpt, where pt ¼ qtqt is the probability of

closing a cycle at the next time step tþ 1. Then, the probabil-

ity of generating a cycle of length L becomes simply the sum

over all possible path lengths, with the maximum path length

tmax ¼ N for the Markovian routing and ðN À 1Þ2 þ 1

for routing with memory. Thus, the probability to find

an L-cycle is

~qvðL;NÞ ¼
XLmax

t¼L

ððN À 1Þ2Þ!
ðN À 1Þ2tððN À 1Þ2 þ 1À tÞ!

;

where we denoted with ~qvðL;NÞ the weighted cycle length

distribution for the vertex routing model, viz., the cycle

length distribution for on-the-fly dynamics. An analogous

relation holds for the Markovian model. By generalizing the

scaling relation (8), one finds ~qvðL;NÞ ¼ ~qmðL; ðN À 1Þ2 þ
1Þ and consequently hLi~vðNÞ ¼ hLi ~mððN À 1Þ2 þ 1Þ, where
~qm denotes the weighted cycle length distributions for the

Markovian model.

Fitting the data, as shown in Fig. 4 for the vertex routing

model, with and without log-corrections, we find evidence

for a scaling $N and $
ffiffiffiffi
N

p
for the mean cycle lengths of the

vertex routing and the Markovian model, respectively, with

on-the-fly dynamics. Note that the overall number of cycles

cannot be obtained when routing on the fly, only relative

quantities can be evaluated.

V. DISCUSSION

For Boolean networks, the phase space volume X is 2N

and hence grows exponentially with the number of vertices

N. The fact,8 that the number of attractors grows faster than

any power of N could in principle be related to the exponen-

tial growth of the phase space volume. Our results, however,

show that the critical properties of the Kauffman networks

for connectivity Z¼ 2 and of the vertex routing models con-

sidered here are not related. The scaling $logðXÞ valid for

vertex routing models would imply a polynomial scaling

with the system size

logðXÞ $ N; X ¼ 2N

for critical Kauffman nets, which are, however, not

observed.8 Our results hence indicate that scaling in critical

dynamical systems may generically be non-universal,

depending on the details of the microscopic dynamics.

We also note that other properties of critical dynamical

systems, like the scaling of the number of frozen or relevant

nodes for critical Boolean networks,9 may show highly non-

trivial behavior. For the case of vertex routing models, one

may define a measure of centrality, information centrality,

determined by the number of attractors intersecting a given

vertex, which scales to a non-trivial limiting distribution in

the thermodynamic limit.15

Our results may also be seen in the context of the surge

in interests in modelling18,19 and in experimentally investi-

gating22,23 the spontaneous neural dynamics of the brain.

The observation of power law scaling relations24 has been

interpreted as evidence of a critical self-organized neural

state.25. The power law scaling in neural activity was

observed in spite of strong sub-sampling of neural ava-

lanches resulting from small number of electrodes relative to

total number of neurons within the cortex. Priesemann and

colleges26 have recently demonstrated that sub-sampling of

critical avalanches results in the loss of power law scaling.

This suggests that the power law scaling of neural avalanches

observed in various experiments in spite of sub-sampling,

might have different origins.

Our results suggest, to some extent, that there is no uni-

versal relation in dynamical systems theory between critical-

ity and power law scaling and that scaling is generically

dependent on the observation modus. The unbiased statistics

of a certain property, like the number of attractors or ava-

lanches, may differ from a statistics obtained via stochastic

sampling (qv;mðLÞ and ~qv;mðLÞ in our case). The later will in

general be dependent on the size of the respective basins of

attraction of the dynamical process considered, viz., of a

cycle or an avalanche. For the case of the vertex routing

TABLE I. Scaling relations, as a function of the number of vertices N, for

the number of cycles and for the mean of the cycle length distribution,

respectively, for vertex routing (v) and the Markovian (m) model. The rout-

ing table distribution is either quenched (exact result) or generated on the

fly, as it corresponds to a stochastic sampling of phase space. Only relative

quantities can be evaluated for on the fly dynamics.

Quenched on the fly

(v) Number of cycles logðNÞ —

mean cycle length N=logðNÞ N

(m) Number of cycles logðNÞ —

mean cycle length
ffiffiffiffi
N

p
=logðNÞ

ffiffiffiffi
N

p
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models studied here we found logarithmic corrections to

power law scaling for the unbiased, quenched statistics and

pure power law scaling for stochastic on the fly sampling.

We conclude that experimental observations of real-world

systems, when investigating scaling, need to be interpreted

carefully.
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