- ANTIFERROMAGNETISM -

Mean field theory

\&

Spin wave theory
24.06.10

Alisa Lier

Content

- Mean field theory of the Heisenberg model
- MFT: ferromagnetism
- MFT: antiferromagnetism
- Disadvantages
- Spin wave theory
- Summary

Mean field theory

Heisenberg model for ferromagnetism

- Coulomb interaction
- Pauli principle

$$
H=-\sum_{n, m} J\left(\vec{R}_{m}-\vec{R}_{n}\right) \vec{S}_{m} \cdot \vec{S}_{n}
$$

\vec{R}_{m}, \vec{R}_{n} : position of lattice points
$J\left(\vec{R}_{m}-\vec{R}_{n}\right)$: exchange interaction $(J>0)$

Mean field theory

rewrite spin product:

$$
\begin{aligned}
\vec{S}_{m} \cdot \vec{S}_{n}=\vec{S}_{m}\left\langle\vec{S}_{n}\right\rangle+\left\langle\vec{S}_{m}\right\rangle & \vec{S}_{n}-\left\langle\vec{S}_{m}\right\rangle\left\langle\vec{S}_{n}\right\rangle \\
& +\underbrace{\left(\vec{S}_{m}-\left\langle\vec{S}_{m}\right\rangle\right)\left(\vec{S}_{n}-\left\langle\vec{S}_{n}\right\rangle\right)}_{\text {neglect fluctuations }}
\end{aligned}
$$

Mean field Heisenberg Hamiltonian:

$$
H=-\sum_{n, m} J\left(\vec{R}_{m}-\vec{R}_{n}\right) \vec{S}_{m}\left\langle\vec{S}_{n}\right\rangle-\sum_{n, m} J\left(\vec{R}_{m}-\vec{R}_{n}\right)\left\langle\vec{S}_{m}\right\rangle \vec{S}_{n}+C
$$

isotropy: $J\left(\vec{R}_{m}-\vec{R}_{n}\right)=J\left(\vec{R}_{n}-\vec{R}_{m}\right)$

Mean field theory

$$
H=-\sum_{n} \vec{S}_{n} \cdot[\underbrace{\left[2 \sum_{m} J\left(\vec{R}_{m}-\vec{R}_{n}\right)\left\langle\vec{S}_{m}\right\rangle\right]}_{\text {effective external field }}
$$

- 2-particle interaction $\xrightarrow{\text { MFT }}$ interaction with $\vec{B}_{\text {eff }}$

$$
H=-g \mu_{B} \sum_{n} \vec{S}_{n} \cdot \vec{B}_{e f f}
$$

homogeneity : $\left\langle\vec{S}_{m}\right\rangle=\langle\vec{S}\rangle ; \quad \vec{B}_{\text {eff }}=\frac{2}{g \mu_{B}} \lambda\langle\vec{S}\rangle$

Mean field theory: antiferromagnetism

- $J\left(\vec{R}_{m}-\vec{R}_{n}\right)<0 \longrightarrow$
antiparallel arrangement
- divison into 2 sublattices:
plus and minus

MFT:

$$
H=-g \mu_{B} \sum_{n^{+}} \vec{S}_{n} \cdot \vec{B}_{+}-g \mu_{B} \sum_{n^{-}} \vec{S}_{n} \cdot \vec{B}_{-}
$$

Mean field theory: antiferromagnetism

effective external fields:

$$
\begin{aligned}
& \quad g \mu_{B} \vec{B}_{+}=2 \sum_{m^{+}} J\left(\vec{R}_{m}-\vec{R}_{n}\right)\langle\vec{S}\rangle_{+}+2 \sum_{m^{-}} J\left(\vec{R}_{m}-\vec{R}_{n}\right)\langle\vec{S}\rangle_{-} \\
& g \mu_{B} \vec{B}_{-}=2 \sum_{m^{-}} J\left(\vec{R}_{m}-\vec{R}_{n}\right)\langle\vec{S}\rangle_{-}+2 \sum_{m^{+}} J\left(\vec{R}_{m}-\vec{R}_{n}\right)\langle\vec{S}\rangle_{+} \\
& g \mu_{B} \vec{B}_{+}=2 \lambda_{++}\langle\vec{S}\rangle_{+}+2 \lambda_{+-}\langle\vec{S}\rangle_{-} \\
& g \mu_{B} \overrightarrow{B_{-}}=2 \lambda_{--}\langle\vec{S}\rangle_{-}+2 \lambda_{-+}\langle\vec{S}\rangle_{+} \\
& \text {symmetry: } \lambda_{++}=\lambda_{--} \text {and } \lambda_{+-}=\lambda_{-+}
\end{aligned}
$$

Mean field theory: antiferromagnetism

sublattice magnetization:

$$
\begin{gathered}
\vec{M}_{+}=\frac{N}{2} g \mu_{B}\langle\vec{S}\rangle_{+} \quad \vec{M}_{-}=\frac{N}{2} g \mu_{B}\langle\vec{S}\rangle_{-} \\
\vec{B}_{+}=-\mu_{0} \Gamma \vec{M}_{+}-\mu_{0} A \vec{M}_{-} \\
\vec{B}_{-}=-\mu_{0} \Gamma \vec{M}_{-}-\mu_{0} A \vec{M}_{+}
\end{gathered}
$$

with $\Gamma=-\frac{4}{g^{2} \mu_{B}^{2} N \mu_{0}} \lambda_{++}$and $A=-\frac{4}{g^{2} \mu_{B}^{2} N \mu_{0}} \lambda_{+-}$

Mean field theory: antiferromagnetism

calculation of magnetization of sublattice plus:

$$
H_{+}=-g \mu_{B} \sum_{n^{+}} \vec{S}_{n} \cdot \vec{B}_{+} ; \quad \vec{B}_{+}=-\mu_{0} \Gamma \vec{M}_{+}-\mu_{0} A \vec{M}_{-}
$$

quantization of spin orientation:

$$
\begin{aligned}
& \vec{S}_{n} \cdot \vec{B}_{+}=\hbar s_{n} B_{+} ; \quad s_{n}=-S,-S+1, \ldots, S-1, S \\
& \longrightarrow \quad H_{+}=-b \sum_{n}+S_{n} ; \quad b=g \mu_{B} \hbar B_{+}
\end{aligned}
$$

magnetization:

$$
M_{+}=\frac{1}{\beta} \frac{\partial \ln Z_{+}}{\partial B^{+}}
$$

Mean field theory: antiferromagnetism

partition function:

$$
\begin{gathered}
Z_{+}=\operatorname{Tr} e^{-\beta H_{+}}=\sum_{s_{1}=-S}^{S} \ldots \sum_{s_{\frac{N}{2}}=-S}^{S} \exp \left(\beta b \sum_{n=1}^{\frac{N}{2}} s_{n}\right) \\
=\prod_{n=1}^{\frac{N}{2}} \sum_{s_{\frac{N}{2}}=-S}^{S} e^{\beta b s_{n}}=\left[e^{\beta b S}\left(1+e^{-\beta b}+e^{-2 \beta b}+\cdots e^{-2 \beta b S}\right)\right]^{\frac{N}{2}} \\
=\left[e^{\beta b S} \sum_{x=0}^{2 S}\left(e^{-\beta b}\right)^{x}\right]^{\frac{N}{2}}=\left[e^{\beta b S} \frac{1-e^{-\beta b(2 S+1)}}{1-e^{-\beta b}}\right]^{\frac{N}{2}} \\
=\left[\frac{e^{\beta b\left(S+\frac{1}{2}\right)}-e^{-\beta b\left(S+\frac{1}{2}\right)}}{e^{\frac{1}{2} \beta b}-e^{-\frac{1}{2} \beta b}}\right]^{\frac{N}{2}}=\left[\frac{\sinh \left(\beta b\left(S+\frac{1}{2}\right)\right)}{\sinh \left(\frac{1}{2} \beta b\right)}\right]^{\frac{N}{2}}
\end{gathered}
$$

Mean field theory: antiferromagnetism

magnetization:

$$
\begin{aligned}
M_{ \pm} & =\frac{1}{\beta} \frac{\partial \ln Z_{ \pm}}{\partial B_{ \pm}}=\frac{N}{2} g \mu_{B} S \cdot \mathcal{B}_{S}\left(\beta g \mu_{B} S B_{ \pm}\right) \\
& =\frac{N}{2} g \mu_{B} S \cdot \mathcal{B}_{S}\left(\beta g \mu_{B} S\left|-\mu_{0} \Gamma \vec{M}_{ \pm}-\mu_{0} A \vec{M}_{\mp}\right|\right)
\end{aligned}
$$

\longrightarrow self consistent equation for $M_{ \pm}$
Brillouin function:

$$
\mathcal{B}_{S}(x)=\frac{2 S+1}{2 S} \operatorname{coth}\left(\frac{2 S+1}{2 S} x\right)-\frac{1}{2 S} \operatorname{coth}\left(\frac{1}{2 S} x\right)
$$

for $S=\frac{1}{2}$ particles:

$$
\mathcal{B}_{\frac{1}{2}}(x)=\tanh x
$$

Mean field theory: antiferromagnetism

for no external field: $\vec{M}_{+}=-\vec{M}_{-}=\vec{M}$

graphical solution: $\quad y_{1}, y_{2}$

Mean field theory: antiferromagnetism

beyond $M_{S}=0$ there exist 2 other solutions (intersections) for

$$
\left(\frac{d y_{2}}{d M}\right)_{M_{S}=0}>1
$$

Taylor expansion of $\mathcal{B}_{S}(x)$ for $x \ll 1$:

$$
\begin{gathered}
\mathcal{B}_{S}(x)=\frac{S+1}{3 S} x-\frac{S+1}{2 S} \frac{2 S^{2}+2 S+1}{30 S^{2}} x^{3}+\cdots \\
\left(\frac{d y_{2}}{d M}\right)_{M_{S}=0}=\frac{N}{2} g \mu_{B} S \frac{S+1}{3 S} \beta g \mu_{B} S \mu_{0}(A-\Gamma)=\frac{C}{2} \frac{A-\Gamma}{T} \\
\frac{C}{2} \frac{A-\Gamma}{T_{N}}=1 \Longrightarrow T_{N}=\frac{C}{2}(A-\Gamma) \quad \text { Néel temperature }
\end{gathered}
$$

Mean field theory: antiferromagnetism

antiferromagnetic phase transition:

- $T>T_{N}$: sublattice magnetization vanishes $\longrightarrow M_{ \pm}=0$
- $T<T_{N}$: antiparallel orientation of spins $\longrightarrow M_{ \pm} \neq 0$ (spontaneous sublattice magnetization)
classical Néel state (ground state $T=0$):
$M_{ \pm}(T=0)=M_{ \pm}^{\max }$
\longrightarrow perfect antiparallel orientation

Mean field theory: disadvantages

- Existence of phase transition independent of d
\longrightarrow no magnetic ordering in 1d, 2d
- critical exponents are not correct
- low temperature behavior of M is not correct
\longrightarrow Mean field theory only gives a qualitative behavior of an antiferromagnet

Spin wave theory

Spin wave theory: introduction

Heisenberg Hamiltonian (antiferromagnet $J>0$):

$$
\begin{array}{r}
H=J \sum_{j \delta} \vec{S}_{j} \cdot \vec{S}_{j+\delta}=J \sum_{j \delta}\left(S_{j}^{x} S_{j+\delta}^{x}+S_{j}^{y} S_{j+\delta}^{y}+S_{j}^{z} S_{j+\delta}^{z}\right) \\
\text { with } S^{ \pm}=S^{x} \pm i S^{y} \\
\longrightarrow H=J \sum_{j \delta}^{\sum_{j \delta} \underbrace{\left\{S_{j}^{z} S_{j+\delta}^{z}\right.}_{(1)}+\frac{1}{2} \underbrace{\left.\left.S_{j}^{+} S_{j+\delta}^{-}+S_{j}^{-} S_{j+\delta}^{+}\right)\right\}}_{\text {(2) }}}
\end{array}
$$

(1) energy gain through antiparallel orientation (classical Néel state)
(2) $S^{ \pm}$-operators produce a propagating spin flip \longrightarrow propagation of a spin wave

Spin wave theory: introduction

oscillations about Néel state:

normal modes are spin waves:

- creation of a quasi-particle: magnon (boson)
- aim: rewrite spin operators in terms of boson creation and annihilation operators

Spin wave theory: antiferromagnetism

Holstein Primakoff transformation:
division into 2 sublattices A and B :

A (spin up)	B (spin down)
$S_{A j}^{+}=\sqrt{2 S}\left(1-\frac{a_{j}^{\dagger} a_{j}}{2 S}\right)^{\frac{1}{2}} a_{j}$	$S_{B l}^{+}=\sqrt{2 S} b_{l}^{\dagger}\left(1-\frac{b_{l}^{\dagger} b_{l}}{2 S}\right)^{\frac{1}{2}}$
$S_{A j}^{-}=\sqrt{2 S} a_{j}^{\dagger}\left(1-\frac{a_{j}^{\dagger} a_{j}}{2 S}\right)^{\frac{1}{2}}$	$S_{B l}^{-}=\sqrt{2 S}\left(1-\frac{b_{l}^{\dagger} b_{l}}{2 S}\right)^{\frac{1}{2}} b_{l}$
$S_{A j}^{Z}=S-a_{j}^{\dagger} a_{j}$	$S_{B l}^{Z}=S-b_{l}^{\dagger} b_{l}$

Fulfills $\left[S_{j}^{+}, S_{j}^{-}\right]=2 S_{j}^{z}$

Spin wave theory: antiferromagnetism

assumption: low temperatures \longrightarrow only few excited magnons

$$
\begin{gathered}
\frac{\left\langle a_{j}^{\dagger} a_{j}\right\rangle}{S}=\frac{\left\langle n_{j}\right\rangle}{S} \ll 1 \\
S_{A j}^{+}=\sqrt{2 S}\left(1-\frac{a_{j}^{\dagger} a_{j}}{2 S}\right)^{\frac{1}{2}} a_{j} \approx \sqrt{2 S}\left(a_{j}-\frac{a_{j}^{\dagger} a_{j} a_{j}}{4 S}\right)
\end{gathered}
$$

A (spin up)	B (spin down)
$S_{A j}^{+}=\sqrt{2 S}\left(a_{j}-\frac{a_{j}^{\dagger} a_{j} a_{j}}{4 S}\right)$	$S_{B l}^{+}=\sqrt{2 S}\left(b_{l}^{\dagger}-\frac{b_{l}^{\dagger} b_{l}^{\dagger} b_{l}}{4 S}\right)$
$S_{A j}^{-}=\sqrt{2 S}\left(a_{j}^{\dagger}-\frac{a_{j}^{\dagger} a_{j}^{\dagger} a_{j}}{4 S}\right)$	$S_{B l}^{-}=\sqrt{2 S}\left(b_{l}-\frac{b_{l}^{\dagger} b_{l} b_{l}}{4 S}\right)$
$S_{A j}^{Z}=S-a_{j}^{\dagger} a_{j}$	$S_{B l}^{Z}=S-b_{l}^{\dagger} b_{l}$

Spin wave theory: antiferromagnetism

propagating excitations $\longrightarrow \vec{k}$-space operators:

$\mathrm{A}($ spin up)	B (spin down)
$a_{j}^{\dagger}=\sqrt{\frac{2}{N}} \sum_{\vec{k}} e^{i \vec{k} \vec{\jmath}} C_{\vec{k}}^{\dagger}$	$b_{l}^{\dagger}=\sqrt{\frac{2}{N}} \sum_{\vec{k}} e^{i \vec{k} \vec{l}} d_{\vec{k}}^{\dagger}$
$a_{j}=\sqrt{\frac{2}{N}} \sum_{\vec{k}} e^{-i \vec{k} \vec{\jmath}} C_{\vec{k}}$	$b_{l}=\sqrt{\frac{2}{N}} \sum_{\vec{k}} e^{-i \vec{k} \vec{l}} d_{\vec{k}}$

satisfy boson commutation relations:
$\left[c_{\vec{k}}, c_{\vec{k} \prime}^{\dagger}\right]_{-}=\delta_{\vec{k} k \prime}$ and $\left[c_{\vec{k}}, c_{\vec{k} \prime}\right]_{-}=\left[c_{\vec{k}}^{\dagger}, c_{\vec{k} \prime}^{\dagger}\right]_{-}=0$

Spin wave theory: antiferromagnetism

$$
H=J \sum_{j \delta}\left\{S_{A j}^{z} S_{A j+\delta}^{z}+\frac{1}{2}\left(S_{A j}^{+} S_{A j+\delta}^{-}+S_{A j}^{-} S_{A j+\delta}^{+}\right)\right\}+J \sum_{j \delta}\left\{S_{B j}^{z} S_{B j+\delta}^{z}+\frac{1}{2}\left(S_{B j}^{+} S_{B j+\delta}^{-}+S_{B j}^{-} S_{B j+\delta}^{+}\right)\right\}
$$

A (spin up)	B (spin down)
$S_{A j}^{+}=\sqrt{2 S}\left(a_{j}-\frac{a_{j}^{\dagger} a_{j} a_{j}}{4 S}\right)$	$S_{B l}^{+}=\sqrt{2 S}\left(b_{l}^{\dagger}-\frac{b_{l}^{\dagger} b_{l}^{\dagger} b_{l}}{4 S}\right)$
$S_{A j}^{-}=\sqrt{2 S}\left(a_{j}^{\dagger}-\frac{a_{j}^{\dagger} a_{j}^{\dagger} a_{j}}{4 S}\right)$	$S_{B l}^{-}=\sqrt{2 S}\left(b_{l}-\frac{b_{l}^{\dagger} b_{l} b_{l}}{4 S}\right)$
$S_{A j}^{z}=S-a_{j}^{\dagger} a_{j}$	$S_{B l}^{z}=S-b_{l}^{\dagger} b_{l}$
$a_{j}^{\dagger}=\sqrt{\frac{2}{N}} \sum_{\vec{k}} e^{i \vec{k} \vec{j}} c_{\vec{k}}^{\dagger}$	$b_{l}^{\dagger}=\sqrt{\frac{2}{N}} \sum_{\vec{k}} e^{i \vec{k} \vec{l}} d_{\vec{k}}^{\dagger}$
$a_{j}=\sqrt{\frac{2}{N}} \sum_{\vec{k}} e^{-i \vec{k} \vec{j}} c_{\vec{k}}$	$b_{l}=\sqrt{\frac{2}{N}} \sum_{\vec{k}} e^{-i \vec{k} \vec{l}} d_{\vec{k}}$

Spin wave theory: antiferromagnetism

Spin wave theory:

$$
\begin{gathered}
H=-\frac{N z}{2} J S^{2}+{\underset{\substack{\text { classical Néel } \\
\text { energy }}}{H \text { bilinear terms of }} \begin{array}{c}
\text { c-,d-operators }
\end{array}}_{H_{0}}+H_{\substack{\text { higher order terms } \\
\text { (magnon-magnon interaction) }}}^{H_{0}} \underset{\vec{k}}{ }\left[\gamma_{\vec{k}}\left(c_{\vec{k}} d_{-\vec{k}}+d_{\vec{k}}^{\dagger} C_{-\vec{k}}^{\dagger}\right)+\left(c_{\vec{k}}^{\dagger} c_{\vec{k}}+d_{\vec{k}}^{\dagger} d_{\vec{k}}\right)\right] \\
\text { with } \gamma_{\vec{k}}=\frac{1}{z} \sum_{\delta} e^{i \vec{k} \vec{\delta}}
\end{gathered}
$$

\Rightarrow aim: diagonalization of H_{0}

Spin wave theory: antiferromagnetism

rewrite H_{0} :

$$
\begin{gathered}
\frac{1}{z J S} H_{0}=\frac{1}{2}\left(\sum_{\vec{k}} H_{\vec{k}}^{(1)}+\sum_{\vec{k}} H_{\vec{k}}^{(2)}\right) \\
H_{\vec{k}}^{(1)}=\gamma_{\vec{k}}\left(c_{\vec{k}}^{\dagger} d_{-\vec{k}}^{\dagger}+d_{-\vec{k}} C_{\vec{k}}\right)+\left(c_{\vec{k}}^{\dagger} C_{\vec{k}}+d_{-\vec{k}}^{\dagger} d_{-\vec{k}}\right) \\
H_{\vec{k}}^{(2)}=\gamma_{\vec{k}}\left(d_{\vec{k}}^{\dagger} C_{-\vec{k}}^{\dagger}+C_{-\vec{k}} d_{\vec{k}}\right)+\left(c_{-\vec{k}}^{\dagger} C_{-\vec{k}}+d_{\vec{k}}^{\dagger} d_{\vec{k}}\right)
\end{gathered}
$$

Diagonalization of $H_{\vec{k}}^{(1)} \longrightarrow H_{\vec{k}}^{(1)}=\lambda_{\vec{k}} \alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}}$
Bogolyubov transformation:

$$
\begin{aligned}
& \alpha_{\vec{k}}=u_{\vec{k}} c_{\vec{k}}-v_{\vec{k}} d_{-\vec{k}}^{\dagger} \\
& \alpha_{\vec{k}}^{\dagger}=u_{\vec{k}} c_{\vec{k}}^{\dagger}-v_{\vec{k}} d_{-\vec{k}}
\end{aligned}
$$

$$
\begin{aligned}
& u_{\vec{k}}, v_{\vec{k}} \in \mathbb{R} \\
& u_{\vec{k}}^{2}-v_{\vec{k}}^{2}=1 \rightarrow\left[\alpha_{\vec{k}}, \alpha_{\vec{k}}^{\dagger}\right]_{-}=1
\end{aligned}
$$

Spin wave theory: antiferromagnetism

$$
\begin{aligned}
& H_{\vec{k}}^{(1)}=\lambda_{\vec{k}} \alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}} \longrightarrow\left[\alpha_{\vec{k}}, H_{\vec{k}}^{(1)}\right]_{-}=\lambda_{\vec{k}} \alpha_{\vec{k}} \quad \text { and }\left[\alpha_{\vec{k}}^{\dagger}, H_{\vec{k}}^{(1)}\right]_{-}=-\lambda_{\vec{k}} \alpha_{\vec{k}}^{\dagger} \\
& \begin{array}{l}
\alpha_{\vec{k}}=u_{\vec{k}} c_{\vec{k}}-v_{\vec{k}} d_{-\vec{k}}^{\dagger} \\
\alpha_{\vec{k}}^{\dagger}=u_{\vec{k}} c_{\vec{k}}^{\dagger}-v_{\vec{k}} d_{-\vec{k}}
\end{array} H_{\vec{k}}^{(1)}=\gamma_{\vec{k}}\left(c_{\vec{k}}^{\dagger} d_{-\vec{k}}^{\dagger}+d_{-\vec{k}} c_{\vec{k}}\right)+\left(c_{\vec{k}}^{\dagger} c_{\vec{k}}+d_{-\vec{k}}^{\dagger} d_{-\vec{k}}\right)
\end{aligned}
$$

$$
\underbrace{\left(\begin{array}{cc}
1-\lambda_{\vec{k}} & \gamma_{\vec{k}} \\
\gamma_{\vec{k}} & 1-\lambda_{\vec{k}}
\end{array}\right)}_{\text {det }=0}\binom{u_{\vec{k}}}{v_{\vec{k}}}=0
$$

$$
\lambda_{\vec{k}}^{2}=1-\gamma_{\vec{k}}^{2} \longrightarrow \text { determination of } u_{\vec{k}}, v_{\vec{k}}
$$

Spin wave theory: antiferromagnetism

$$
H_{0}=-\frac{J z N}{2} S(S+1)+J z S \sum_{\vec{k}} \sqrt{1-\gamma_{\vec{k}}^{2}}\left\{\left(\alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}}+\frac{1}{2}\right)+\left(\beta_{\vec{k}}^{\dagger} \beta_{\vec{k}}+\frac{1}{2}\right)\right\}
$$

$$
\hbar \omega_{\vec{k}}=J z S \sqrt{1-\gamma_{\vec{k}}^{2}} \quad\left(\gamma_{\vec{k}}=\frac{1}{z} \sum_{\delta} e^{i \overrightarrow{k \delta}}\right)
$$

dispersion relation for magnons (antiferromagnet)
long wavelength-limit $a|\vec{k}| \ll 1$:

$$
\begin{aligned}
& \sqrt{1-\gamma_{\vec{k}}^{2}} \approx a|\vec{k}| \\
\longrightarrow & \hbar \omega_{\vec{k}} \approx J z S a|\vec{k}|
\end{aligned}
$$

linear dispersion

Spin wave theory: antiferromagnetism

$$
H=E_{0}+\sum_{\vec{k}} \hbar \omega_{\vec{k}}\left(\alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}}+\beta_{\vec{k}}^{\dagger} \beta_{\vec{k}}\right)
$$

ground state energy:

$$
E_{0}=\underbrace{-\frac{1}{2} N z J S^{2}}_{\text {classical Néel energy }}+\underbrace{J z S \sum_{\vec{k}}\left(\sqrt{1-\gamma_{\vec{k}}^{2}}-1\right)}_{\begin{array}{c}
\text { excitation due to } \\
\text { quantum fluctuation }
\end{array}}
$$

magnetization per spin (in ground state):

$$
m=S-\underbrace{\frac{1}{N} \sum_{\vec{k}}\left(\frac{1}{\sqrt{1-\gamma_{\vec{k}}^{2}}}-1\right)}_{\text {spin reduction }}
$$

Summary: Mean field theory

Heisenberg model:

$$
H=-\sum_{n, m} J\left(\vec{R}_{m}-\vec{R}_{n}\right) \vec{S}_{m} \cdot \vec{S}_{n}
$$

MFT:
$H=-g \mu_{B} \sum_{n^{+}} \vec{S}_{n} \cdot \vec{B}_{+}-g \mu_{B} \sum_{n^{-}} \vec{S}_{n} \cdot \vec{B}_{-} \quad$ with $\quad \vec{B}_{ \pm}=-\mu_{0} \Gamma \vec{M}_{ \pm}-\mu_{0} A \vec{M}_{\mp}$

$$
M=\frac{N}{2} g \mu_{B} S \cdot \mathcal{B}_{S}\left(\beta g \mu_{B} S \mu_{0}(A-\Gamma) M\right)
$$

$$
\begin{aligned}
& T_{N}=\frac{C}{2}(A-\Gamma) \\
& M_{ \pm}(T=0)=M_{ \pm}^{\max }
\end{aligned}
$$

Summary: Spin wave theory

Heisenberg model:

$$
H=J \sum_{j \delta}\left\{S_{A j}^{z} S_{A j+\delta}^{z}+\frac{1}{2}\left(S_{A j}^{+} S_{A j+\delta}^{-}+S_{A j}^{-} S_{A j+\delta}^{+}\right)\right\}+J \sum_{j \delta}\left\{S_{B j}^{z} S_{B j+\delta}^{z}+\frac{1}{2}\left(S_{B j}^{+} S_{B j+\delta}^{-}+S_{B j}^{-} S_{B j+\delta}^{+}\right)\right\}
$$

- Holstein-Primakofftransformation
- \vec{k}-space operators
- Bogolyubov transformation

$$
\begin{gathered}
H=E_{0}+\sum_{\vec{k}} \hbar \omega_{\vec{k}}\left(\alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}}+\beta_{\vec{k}}^{\dagger} \beta_{\vec{k}}\right) \\
E_{0}=-\frac{1}{2} N z J S^{2}+J z S \sum_{\vec{k}}\left(\sqrt{1-\gamma_{\vec{k}}^{2}}-1\right) \\
\hbar \omega_{\vec{k}} \approx J z S a|\vec{k}| \\
m=S-\frac{1}{N} \sum_{\vec{k}}\left(\frac{1}{\sqrt{1-\gamma_{\vec{k}}^{2}}}-1\right)
\end{gathered}
$$

