Quantum Computers

Ladd et al., Nature 464, 45 (2010)

Motivation

QC solves some problems faster:

 Shor-Algorithm (facotring of large numbers) 300-digit number:

→ classical: 150 000 years

 \rightarrow QC: < 1s

Grover-Algorithm (efficient search)

Simulation of quantum systems

Content

- 1. Important conepts
- 2. Photons
- 3. Trapped atoms
- 4. Quantum dots and dopants
- 5. Superconductor
- 6. Outlook

Important concepts

- Classical bit: value 0 or 1
- Qubit: |0>, |1> or any superposition
- Entanglement of many qubits (e.g. 2 qubits):
 |00>, |01>, |10>, |11> ---> superposition
- N entangled qubits have 2^N states (qubit register)
 → 1 operation on a qubit register effects 2^N manipulations

Important concepts

• Quantum operations with logic gates

electron spins: magnetic fields

- \rightarrow energy levels in atoms: laser pulse
- CNOT-gate: two-qubit-gate
 - → interaction between qubits

 universel logic gate: CNOT-gate and all single-qubitgates

Important concepts

Problems: decoherence

- Destroys entanglement because of interactions
 - isolation of qubits
- long coherence time T_2
- Minimize decoherence effects through QEC
- Initialization of the system: extract entropy (for example laser cooling)

Technologies

Photons

- Qubit: photon with horizontal or vertical polarization
- Manipulation: waveplates
- Entanglement:
 - Non linear optical crystalls
 - KLM-scheme: interference

Problems: single-photon-source/detector and photon loss $\longrightarrow T_2 \sim 0,1$ ms

Trapped atoms

- Qubit: energy levels of trapped atoms ($T_2 \sim 3s$)
- Manipulation: excitation with laser pulses
- Trapped in optical lattices
- Interaction:
 - Collision
 - Rydberg-coupling

http://1.bp.blogspot.com

Trapped atoms

- Qubits: ions trapped in electric fields ($T_2 \sim 15$ s)
- Entanglement: spin coupling through harmonic oscillations
- Problem: entanglement of many ions
 - photon coupling of small systems

Quantum dots and dopants

- Quantum dots: bound elctrons in semi-conductor
- Dopants: P in Si binds one donator electron
- Qubit: orientation of electron spin
- Manipulation: electric and magnetic fields
- Coupling: exchange interaction

Superconductor

- Macroscopic quantum state —> manipulation with classical devices (L and C)
- LC-resonator: harmonic oscillator with equidistant enery levels
- Qubits need non-linearities
 josephson junction: anharmonic
 potential

Superconductor

- Charge Qubit
- Flux Qubit
- Phase Qubit

Outlook

- Fast QC: 100 entangled qubits
- Enlarge coherence time
- QEC