SUPERCONDUCTIVITY GETS AN IRON BOOST

Igor I. Mazin Nature Vol 464, 11 March 2010

Jens Schalkowski, 06.05.2010

Content

- * Introduction
- * Classes of superconductors
 - * copper oxides
 - * magnesium diboride
 - * iron-based superconductors
- * Summary

Introduction

interpretation of experimental data on odd numbers

- * 1,3,5,7 are all prime numbers
- * all odd numbers are prime?
- * 9 as unique case
- * 11,13 are prime
- * 15 is not prime
- * infinitely many odd numbers, but not prime numbers

Introduction

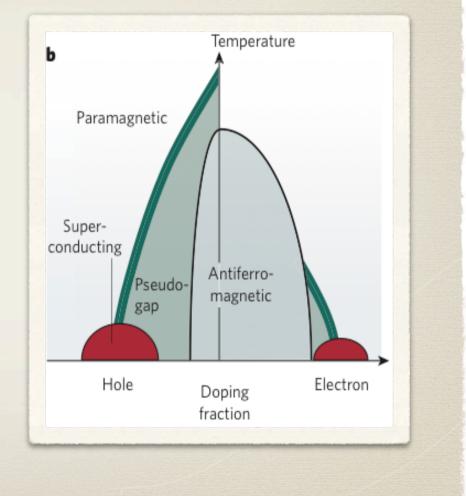
six rules for a successfull search for new superconductors

- * formulated by Berndt Matthias (during 1960s and 1970s)
 - * high symmetry is good, cubic symmetry is best
 - * high density of electronic states is good
 - * stay away from oxygen
 - * stay away from magnetism
 - * stay away from insulators
 - * stay away from theorists

Introduction proof of a maximum critical temperature

- * theory of superconductivity between 1976 and 1986
 * fundamental limit of T_C of about 25-30K
 * 1986 copper-oxide-based superconductors
 * T_C up to 140K
- * underlying mechanism remained unknown

Introduction iron-based superconductors

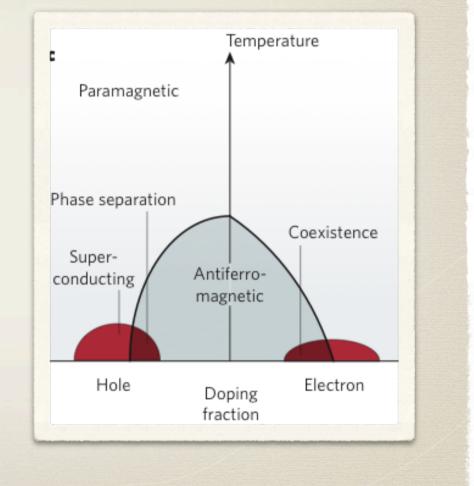

- * discovered in 2008
- * superconductivity not limited to copper oxides
- * commonalities and differences to copper oxides and magnesium diboride
- * new set of rules to replace Matthias's rules

classes of superconductors copper oxides

- * undoped copper oxides are strong magnets and insulators
- * two electrons located on the same copper ion
- * strong Coulomb repulsion
- * strong correlation
- * electron localization

classes of superconductors copper oxides

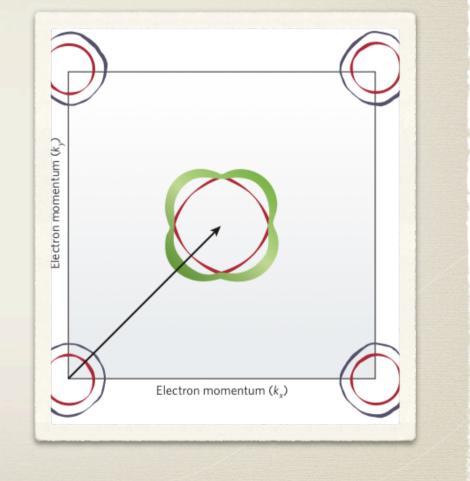
- * undoped:
 - * one valence electron
 - * strong magnets
- * doping:
 - * static magnetism disapears
 - * single band

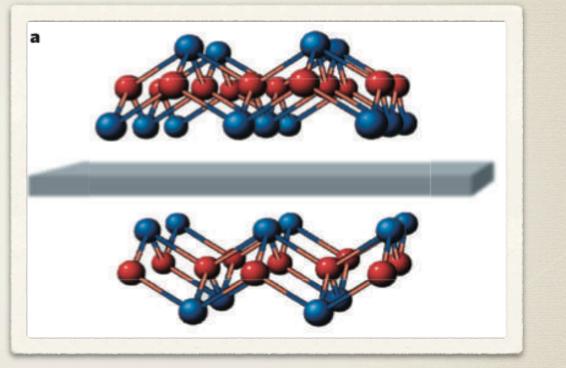

classes of superconductors copper oxides

- * exchange of magnetic fluctuations as "glue" for Cooper pairs
- * wave function of the Cooper pairs: d-wave symmetry
- * paired electrons:
 - * orbit each other with particular angular momentum
 - * avoiding close contact
 - * reducing Coulomb repulsion

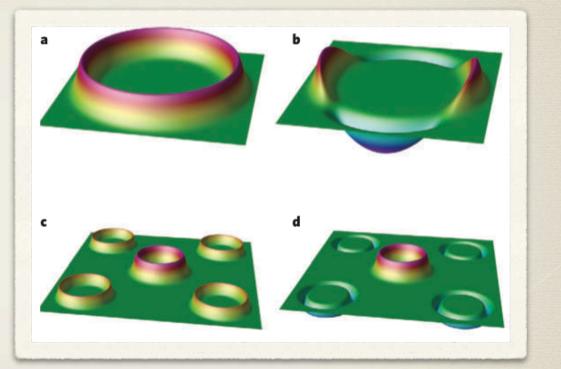
classes of superconductors magnesium diboride

- * no trace of magnetism
- * delocalized electrons
- * complex electron structure
- * two different groups of electrons
- * two-band superconductor


- * as copper oxides:
 - * strong magnets
 - * superconductivity develops when magnetism is destroyed by doping
- * but:
 - * metallic


- ***** main characteristic feature:
- * superconductivity emerges when magnetism is destroyed
- * Coulomb correlations almost absent
- * electrons form multi-sheet Fermi surface
- * magnetic excitations at a particular wavevector Qm
 - * instrumental for mediating the pairing of electrons

* Fermi surface


- * momentum connecting the two sets of Fermi surfaces Q_m
- * spin fluctuations with this moment thought to be instrumental

- * crystal structure
 of iron based
 superconductors
- * Fe atoms in red
- * pnictogens (As, P) or chalcogens (Se, Te) in blue
- * filler layer without atomic detail

- * d-wave (copper oxides)
- * two-band s-wave
 with the same sign
 (MgB₂)
- * s_±-wave (ion-based)

Summary

properties of different classes of superconductors

Property	Conventional superconductors	Copper oxides	MgB ₂	Iron-based superconductors
T _c (maximum)	<30 K	134 K	39 K	56 K
Correlation effects	None (nearly-free electrons)	Strong local electronic interaction	None (nearly-free electrons)	Long-range (non-local) magnetic correlations
Relationship to magnetism	No magnetism	Parent compounds are magnetic insulators	No magnetism	Parent compounds are magnetic metals
Order parameter	One band, same-sign s wave	One band, sign-changing <i>d</i> wave	Two band, same-sign s wave	Two band, presumably sign- changing s wave
Pairing interaction	Electron-phonon	Probably magnetic (no consensus)	Electron-phonon	Presumably magnetic
Dimensionality	Three dimensional	Two dimensional	Three dimensional	Variable

Summary new set of rules replaicing Matthias' rules

- * layered structures are good
- * carrier density should not be too high
- * transition metals of the forth period are good
- * magnetism is essential
- * proper Fermi surface geometry is essential
 - * must match the structure of the spin excitations
- * enlist theorists, at least to compute the Fermi surfaces

References

* Superconductivity gets an iron boost
* Igor I. Mazin, Nature Vol 464, 11 March 2010