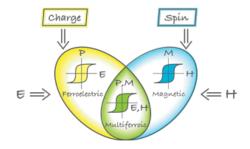
Classifying multiferroics: Mechanisms and effects D. Khomskii, *Physics* **2**, 20 (2009)

Michael Adler Goethe University Frakfurt

May 26, 2010

Outline

- Introduction
- How to combine ferroelectricity and magnetism


Different (sub)types of multiferroics

- Type-I multiferroics
- Type-II multiferroics

Summary

Definition of Multiferroics

Figure: Combination of ferroelectrics and magnets

What's special about multiferroics?

History

- 1959 Landau and Lifshitz postulate existence of multiferroics.
- 1970s very little interest
- 2003 Ramesh et al: Artificial multiferroics produced
- since then great interest

Reasons for interest

- many applications: Spintronics, different sensors...
- basic research

How to combine ferroelectricity and magnetism

Origin of magnetism

- localized electrons in d or f shells
- exchange interaction ⇒ magnetic order

Origin of ferroelectricity

- different microscopic sources
- two types depending on coupling between magnetism and ferroelectricity

Classification of multiferroics

Types of multiferroics

Type-I:

- weak coupling of ferroelectricity and magnetism
- ferroelectricity at higher T than magnetism
- large P
- "old" multiferroics

Type-II:

- strong coupling: polarization changes with H field
- ferroelectricity in low-temperature regime
- weak P
- "new" multiferroics

Why are multiferroics so rare?

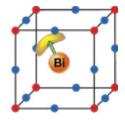
"Mixed" Perovskites

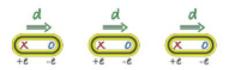
- Perovskites BaTiO₃, Pb(ZrTi)O₃...
- partially filled d shells for magnetism
- empty *d* shells for ferroelectricity
- transition metal ion is shifted ⇒ covalent bond with O (with empty d state)
- " d^0 vs. d^n problem"

Figure: Ferroelectric d^0 ions and magnetic d^n ions

Summary

Ferroelectricity due to lone pairs




Figure: Lone pairs (yellow) of Bi³⁺

- realized in BiFeO₃, BiMnO₃(?)
- outer electrons not in chemical bond

Summary

Ferroelectricity due to charge ordering

Figure: Inequivalent sites lead to ferroelectricity

- \bullet ions with different charge \Rightarrow different lengths
- or inequivalent bonds due to material structure

"Geometric ferroelectricity"

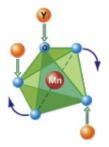


Figure: Mechanism of polarization: Tilting of MnO_5 with magnetic Mn

- formation of dipoles (Y-O)
- not fully understood

Summary

Spiral type-II multiferroics

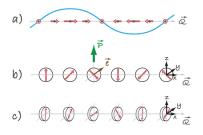
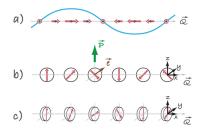


Figure: Spiral spin density wave


Different types of spin density waves (sdw) a sinusoidal sdw

- b cycloidal sdw
- c "proper-screw" sdw

Summary

Spiral type-II multiferroics

Figure: Spiral spin density wave

Example

TbMnO₃

- below 41K sinusoidal sdw
- below 28K cycloidal sdw:

 $\textbf{P} \sim \textbf{Q} \times (\textbf{S}_i \times \textbf{S}_j)$

Collinear type-II multiferroics

- ferroelectricity in collinear magnetic structures
- mostly without spin-orbit interaction
- $\bullet\,$ at low temperatures magnetic ordering $\Rightarrow\,$ inversion symmetry broken
- another mechanism: Frustrated magnets \Rightarrow polarization

Summary

- many applications of multiferroics
- two types of multiferroics: depending on coupling of magnetism and ferroelctricity
- many open questions

Todo

- fabrication and study of "artificial" multiferroics
- understanding of basic properties: Ab initio calculations
- study of elementary excitations
- . . .

