Non-Abelian states of matter Ady Stern, Nature **464**, 187 (2010)

Steffen Backes

Goethe-University Frankfurt

20.05.2010

Fundamental particle statistics

Dichotomy

- All particles are either bosons or fermions
- Distinguishable by the symmetry of the wave function

Key element for understanding many-particle systems (e.g. periodic table, metals, cooper-pairs, BEC...)

H	Periodic Table of the Elements															He	
Li ³	Be		hydro alkali alkali	gen metal earth	s metal	s	 poor metals nonmetals noble gases rare earth metals 					В	C	N	08	F	Ne Ne
Na	12 Mg		transi	tion n	netals							AI	Si	15 P	16 S	17 Cl	Ar ¹⁸
19 K	Ca ²⁰	Sc 21	Ti Ti	V ²³	Cr ²⁴	25 Mn	Fe ²⁶	C0	28 Ni	Cu Cu	Zn ³⁰	Ga ³¹	Ge ³²	As	34 Se	35 Br	38 Kr
Rb ³⁷	38 Sr	39 Y	Zr ⁴⁰	Nb	Mo Mo	43 TC	Ru Ru	Rh ⁴⁵	Pd Pd	Ag	Cd ⁴⁸	49 In	50 Sn	Sb 51	Te ⁵²	53	Xe
Cs 55	Ba	57 La	Hf	Ta Ta	W74	Re Re	76 Os	lr ⁷⁷	Pt	79 Au	Hg	81 Ti	82 Pb	83 Bi	84 Po	At 85	Rn 85
87 Fr	88 Ra	AC	Unq	Unp	Unh	Uns	108 Uno	Une	Unn								
			58	59	60	61	62	_ 63	64	- 65	66	67	_68	- 69	70	71	Ĩ.
			Ce	Pr	Nd	Pm	Sm	Eu	Gđ	ID	Dy	HO	Er	Im	۲b	LU	
			Th ⁹⁰	Pa Pa	U ⁹²	93 Np	94 Pu	Am	Cm	97 Bk	Cf ⁹⁸	Es 99	100 Fm	101 Md	102 NO	103 Lr	

Violation of the dichotomy

- The wave function must be even for bosons and odd for fermions under the particle exchange $\vec{r_i}, \vec{r_j} \rightarrow \vec{r_j}, \vec{r_i}$
- Non-abelian systems contain particles that are neither bosons nor fermions, i.e. the wave functions don't get multiplied by the factor ± 1 but the system changes its state into a different state!
- For a series of particle interchanges **the final state of the system depends on the order** of these interchanges!
- Due to this ordering-dependence such systems are called <u>non-abelian</u> (non-commutative)

Interest in non-abelian systems

- There are three main reasons for studying non-abelian systems:
- 1 Theory of such systems is barely known
- 2 Experimental challenge: there are strong arguments for the existence of non-abelian particles in certain systems
- **3** They could be used in topological quantum computers

1 Introduction

Fundamental particle statistics Overview

- Properties of non-abelian states Abelian Systems
- Systems with non-abelian states
 Quantum Hall Effect
 Superconductors
- Detection of non-abelian states Quantum Hall Effect Braiding and interferometry

5 Current research status

Quantum Hall states The $\nu = 5/2$ state Outlook

In the past 3 decades quasiparticles in 2 dimensions have been discovered whose particle statistics differ from the fermion-boson-dichotomy

- Under a particle interchange the wave function may get multiplied by a phase factor $\psi(\vec{r}_i, \vec{r}_j) \rightarrow e^{i\phi}\psi(\vec{r}_j, \vec{r}_i)$
- These quasiparticles are called anyons
- For <u>non-abelian</u> quasiparticles the interchange of two particles shifts the system from its groundstate into another ψ_α(r
 _i, r
 _j) → ψ_β(r
 _j, r
 _i)

There are 4 main characteristics or prerequisits for non-abelian states to occur:

- The groundstate of the system has to be seperated from its excitations by an energy gap
- 2 The groundstate must be **degenerate**
- 3 The degeneracy should be 'robust', i.e. invariant to small perturbations
- The transformation to a different groundstate should only depend on the topology of the interchanging particles' trajectory

To understand what topology of the trajectory means let us consider a 2-dimensional fluid with some vortices which shall represent our non-abelian quasiparticles:

- Let the groundstate of the system depend on the coordinates of the vortices {*R_i*}
- With a degenerate ground state we have a set of groundstate wave functions labeled by the Index α : $|\psi_{\alpha}(\{\vec{R}_i\})\rangle$
- '**Braiding**': the quasiparticles move slowly along a trajectory that starts and ends in the same configuration $\{\vec{R}_i\}$

Non-degenerate groundstate

- For a single non-degenerate groundstate the system will stay in this groundstate (up to a phase factor) for gentle braiding due to the energy gap: $|\psi_{\alpha}(\vec{R}_{i})\rangle \rightarrow e^{i\phi} |\psi_{\alpha}(\vec{R}_{i})\rangle$
- Consecutive braidings result in a product of phase factors which is commutative

Quasiparticles are abelian anyons!

Degenerate groundstate

- For a **degenerate groundstate** braiding could end up with a different groundstate $|\psi_{\alpha}(\vec{R}_i)\rangle \rightarrow |\psi_{\beta}(\vec{R}_i)\rangle$
- Such transformation is no longer given by a phase factor but a unitary matrix $U_{\alpha\beta}$:

 $|\psi_{\beta}(\vec{R}_{i})\rangle = U_{\alpha\beta} |\psi_{\alpha}(\vec{R}_{i})\rangle$

- $U_{\beta\alpha}$ does only depend on the topology of the trajectory, i.e. the interchanges and windings around one another, and not on the geometric details!
- Consecutive braidings result in a **product of unitary matrices**, which is itself non-commutative

\rightarrow Quasiparticles are non-abelian anyons!

- Thus a high degree of degeneracy is needed
- A 'robust' degeneracy of the groundstate is necessary for the emergence of non-abelian particles
- The groundstate has to be seperated by an energy gap
- For certain systems where these criteria are met, like the quantum Hall effect, there is strong evidence for non-abelian states

Quantum Hall Effect

э

Quantum Hall Effect

- 2D electronic system with is subjected to an external field
- A current flow $\vec{j} \perp \vec{B}$ gives rise to the Hall-Voltage U_H

• Hall resistance:
$$R_H = \frac{U_H}{I} = \frac{h}{e^2 \nu}$$

• Classical filling factor $\nu = \frac{nhc}{eB}$

Quantum Hall Effect

- For small T one observes quantum hall states
- Quantized ν leading to plateaus in R_H
- Integer QHE: ν = {1, 2, 3, ...} non-interacting electrons with disordered potential
- Fractional QHE: $\nu = \{1/3, 1/5, 5/2, 12/5, ..\}$ interaction essential

Composite fermions

• The groundstate for $\nu = 5/2$ is a hot candidate for a non-abelian state because it is high degenerate and seperated by an energy gap

A promising theory for this state is the **composite fermion theory**:

- The problem of interacting electrons in a field B is mapped onto a problem of composite fermions with a rescaled B
- These composite fermions may form **Cooper pairs** that are seperated from their excitations by an energy gap
- Then guasiparticles can be induced by variation of the magnetic field which are supposed to be non-abelian

Superconductors

- If these quasiparticles are indeed non-abelian such a system could be used as a topological qubit (by interferometry)
- Non-abelian states are also expected in superconducters (e.g. SrRuO₄)
- The quasiparticles may obey non-abelian statistics
- None of these superconducters has been realized in 2 dimensions yet

The degeneracy of the groundstate poses an experimental difficulty because the usual approach of perturbing the system and examining its response **doesn't work**:

- Perturbations such as electric fields **do not couple** to the different groundstates **equally**
- Nevertheless, the $\nu = 5/2$ quantum Hall state is currently of great interest and several experiments have been proposed

$\nu=5/2$ quantum Hall state

- Being a key thermodynamic ingredient the degeneracy should manifest itself in thermodynamic measurements such as the **heat capacity**
- But the **small electronic contribution** to C_V is neglegible compared to phonons, etc.
- One can measure the temperature dependence of the **electronic magnetization** and **chemical potential** which are connected to the electronic entropy (Maxwell relations)
- This measurements are already possible for 2D systems but have not been carried out for the $\nu=5/2$ state

Interferometry

- One of the most important aspect is to examine and make use of the groundstate transformation by braiding quasiparticles
- Interferometry experiments with quantum Hall systems could be ideal for detecting the transformations and might be used as qubits:

- An interferometer interferes pairs of wave trajectories which gives rise to an **interference pattern**
- The Fabry-Perot interferometer is a quantum Hall system with two constrictions that introduce a tunneling probability for incoming current
- So we have interference between the **backscattered** and **transmitted** current

- The **phase difference** is given by the magnetic flux enclosed by the interference loop (Aharonov-Bohm effect) and also by the presence of **quasiparticles** inside the loop
- For the $\nu = 5/2$ state interference takes place for an even number of quasiparticles depending on their specific groundstate
- The number of quasiparticles can again be controlled with the strength of the external magnetic field

- So the interference should be turned on and off periodically while varying the magnetic field
- The pattern itself **depends on the groundstate** of the quasiparticles and one should be able to change it by braiding these particles
- This could be used as the proposed qubit where a measurement of the interference pattern serves as a read-out of its state
- The state itself is controlled by external fields

- This qubit is called **topological qubit** due to the non-abelian behaviour of the quasiparticles (groundstate depends on topology of trajectories)
- The advantage of this kind of qubit is its **insensivity to perturbations** and **external noise**
- As long as the perturbation does not overcome the energy gap or expels one of the quasiparticles from the interference loop it will not change the state

Current status

- There is a huge difference between the discussed ideal picture and the real world
- One can not or even does not know how to control the number and positions of the quasiparticles
- Effects of the temperature, small energy gaps or tunnel couplings to the edge of the material still need to be understood

Quantum Hall states

- Fabry-Perot interferometers have been studied for $\nu = 1/3$ and 2/5 and oscillations depending on the external field have been observed
- But the effects on the size of the interference loop, the number and the groundstate of the quasiparticles seem to be different than expected

The $\nu = 5/2$ state

• A Fabry-Perot interferometer for the $\nu = 5/2$ state has been realized and recent studies yield 'encouraging, yet not definitive results'.

- The current experiments are aimed at the observation of non-abelian states and much has to be learned about probing states which are insensitive to perturbations
- Non-abelian statistics which are topology dependent pose an exciting challenge to theoretical physics
- Knowledge about these states could be used for the synthesis of new materials, electronic systems, cold atoms, quantum computation...
- One hopes that in the next decade the combination of quantum mechanics, topology and material science will make non-abelian states a reality