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1 Relativistic Fluid Dynamics

05/06/2022

The physical description of a system consisting of many degrees of freedom is in general
quite complicated. However, if one is interested in the large-distance, long-timescale
behavior of the system, it becomes possible to devise an effective theory, taking into
account only the degrees of freedom that are relevant on these scales. This happens
because, on macroscopic time and length scales, we are not able to observe the microscopic
degrees of freedom of the underlying theory, but only average quantities resulting from
interactions on the microscopic level. Most of the microscopic quantities vary rapidly in
space and time, leading to very small changes of the average values, and are not expected
to contribute to the macroscopic dynamics. On the other hand, the few variables that do
vary slowly, such as conserved quantities, are expected to be relevant for the effective
description of the system on macroscopic length and time scales.

Fluid dynamics is a typical example of such an effective theory. It is a classical
field theory that describes the macroscopic dynamics of systems called fluids. A
fluid is a continuous system in which every infinitesimal volume element is (usually)
assumed to be close to thermodynamic equilibrium and to maintain the proximity
to equilibrium throughout its evolution. In other words, in the vicinity of each point in
space, we define an infinitesimal volume, called fluid element, in which the matter is taken
to be homogeneous, i.e., any spatial gradients can be neglected, and is described by a finite
set of thermodynamic variables and currents. This means that each fluid element must be
large enough relative to the microscopic length scales, to guarantee the proximity
to thermodynamic equilibrium, and, at the same time, it must be small enough relative
to the macroscopic length scales, to ensure the continuum limit.

At first glance, the simultaneous applicability of the continuous (zero fluid-element
volume) and thermodynamic (infinite fluid-element volume) limits might seem contradic-
tory. However, if the microscopic and macroscopic scales of the system are sufficiently
far separated, it is always possible to ensure the existence of a volume that is small
when compared with the macroscopic scales, and large when compared with the micro-
scopic ones. For example, considering the case of water, a fluid element with a volume
of about 1 mm3 is small enough to assure the continuous-limit approximation and large
enough to enclose many molecules and to apply the thermodynamic limit. Note that,
for small or rapidly changing systems, such a separation of scales may not be so clear,
making it difficult to ensure the proximity to local thermal equilibrium. This is of par-
ticular importance when we apply fluid dynamics to describe the hot and dense matter
formed in relativistic heavy-ion collisions, where a clear separation between microscopic
and macroscopic scales does not exist. The progress in developing dissipative theories of
relativistic fluid dynamics achieved in recent years has been largely driven by applying
them to describe the dynamical evolution of heavy-ion collisions.
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1 Relativistic Fluid Dynamics

In this chapter, we discuss the basic aspects of relativistic fluid dynamics from a phe-
nomenological perspective. It is organized as follows: In Sec. 1.1, we introduce the basic
laws of thermodynamics and derive the thermodynamic relations that are useful for this
book. Section 1.2 contains a brief review of relativistic ideal fluid dynamics. We derive
the general form of the conserved currents of an ideal fluid and their equations of motion.
Then, Sec. 1.3 shows how to introduce dissipation in fluid dynamics. Here, we explain the
basic aspects of dissipative fluid dynamics and derive a covariant version of Navier-Stokes
theory using the second law of thermodynamics and, also, via the gradient expansion. In
Sec. 1.4 we review the problems of Navier-Stokes theory in the relativistic regime, i.e.,
the acausality and instability of this theory. We also explain how to render Navier-Stokes
theory causal and stable, and to derive a consistent theory of fluid dynamics. Finally, in
Sec. 1.5, we discuss Israel-Stewart theory and show how to derive causal fluid-dynamical
equations from the second law of thermodynamics.

1.1 Thermodynamics

Thermodynamics is a theory empirically constructed to describe the thermodynamical-
equilibrium state in macroscopic systems. It attempts to describe such a state in terms
of a small set of extensive quantities, such as the total energy, E, volume, V , and
(net) number of particles, N , of the system. Thermodynamics is based on four phe-
nomenological laws, obtained over the years by experimental observation [1]:

Zeroth Law: Two systems that are in equilibrium with a third system are in equilib-
rium with each other.

First Law: Energy is conserved.

Second Law: The change in entropy of a closed thermodynamic system is always
positive semi-definite.

Third Law: The difference in entropy between systems connected by a reversible
process is zero in the limit of vanishing temperature.

In this lecture series, we shall make use of the first and second laws of thermody-
namics and, therefore, it is convenient to discuss them in more detail. The first law
of thermodynamics implies that small variations of the state variables, E, V , and N ,
must be related,

δE = δQ− PδV + µδN , (1.1)

where P and µ are the pressure and chemical potential, respectively. As a conservation
law, the first law of thermodynamics postulates that changes in the total energy of the
system (δE) must result from mechanical work done by an external force (−PδV ), from
particle exchange with an external medium (µδN), or/and from heat exchange (δQ). The
heat exchange takes into account the energy variations due to changes of internal degrees
of freedom that are not described by the state variables. The heat itself is not a state
variable since it can depend on the past evolution of the system and may take several
values for the same thermodynamic state.
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1.1 Thermodynamics

However, when dealing with time-reversible processes, it becomes possible to assign a
state variable related to heat. This variable is the entropy, S, and is defined in terms
of the heat exchange as δQ = TδS, with the temperature T being the proportionality
constant. Then, when considering variations between equilibrium states that are infinites-
imally close to each other, it is possible to write the first law of thermodynamics in terms
of complete differentials of the state variables,

dE = TdS − PdV + µdN . (1.2)

Using Eq. (1.2), it is possible to identify the intensive quantities, T , µ, and P as the
following partial derivatives of the energy,

T =
∂E

∂S

∣∣∣∣
N,V

, −P =
∂E

∂V

∣∣∣∣
S,N

, µ =
∂E

∂N

∣∣∣∣
S,V

. (1.3)

The first law of thermodynamics can also be written in terms of entropy variations, i.e.,

dS =
1

T
dE +

P

T
dV − µ

T
dN , (1.4)

in which case the intensive variables can be obtained from partial derivatives of the en-
tropy,

1

T
=

∂S

∂E

∣∣∣∣
N,V

,
P

T
=

∂S

∂V

∣∣∣∣
E,N

,
µ

T
= − ∂S

∂N

∣∣∣∣
E,V

. (1.5)

In the thermodynamical limit, the entropy is an extensive and additive function
of the state variables,

λS = S (λE, λV, λN) . (1.6)

Using this property, it is straightforward to prove that

S =
∂

∂λ
(λS) =

∂S

∂(λE)

∣∣∣∣
λN,λV

E +
∂S

∂(λV )

∣∣∣∣
λE,λN

V +
∂S

∂(λN)

∣∣∣∣
λE,λV

N , (1.7)

which holds for any value of λ. Taking λ = 1 and using Eq. (1.5), we derive the so-called
Euler relation,

TS = E + PV − µN , (1.8)

and using Euler’s relation, combined with the first law of thermodynamics, we obtain the
Gibbs-Duhem relation,

V dP = SdT +Ndµ . (1.9)

Together, Eqs. (1.2), (1.8), and (1.9) allow us to derive the thermodynamic relations
satisfied by the energy, entropy, and (net) particle number densities, ε ≡ E/V , s ≡ S/V ,
and n ≡ N/V , respectively. They are

ε+ P = Ts+ µn , (1.10)

ds = βdε− αdn , (1.11)

dP = sdT + ndµ , (1.12)

3



1 Relativistic Fluid Dynamics

where we defined the inverse temperature β = 1/T and the thermal potential α =
µ/T . Then, Eqs. (1.11) and (1.12) can be used to derive the relations between the intensive
variables and the densities,

β =
∂s

∂ε

∣∣∣∣
n

, α =
∂s

∂n

∣∣∣∣
ε

, s =
∂P

∂T

∣∣∣∣
µ

, n =
∂P

∂µ

∣∣∣∣
T

. (1.13)

The second law of thermodynamics dictates that the entropy of an isolated system
must either increase or remain constant. This implies that, if a given system is in ther-
modynamic equilibrium, i.e., if it is in a quasi-stationary state where its extensive and
intensive variables no longer change, the entropy of this system must remain constant
(as long as the boundary conditions imposed on the system remain fixed). On the other
hand, the entropy of a system that is out of equilibrium must always increase. This
is a very useful and powerful concept that will be extensively used in this chapter. As
we will show later, the second law of thermodynamics can even be used to constrain and,
sometimes, derive the equations of motion of a viscous fluid.

These are the basic aspects of thermodynamics that we wanted to address (for a more
detailed review, see Ref. [1]). It is worth to point out that, although the thermodynamic
relations specify how the macroscopic variables are related and how they change with
time, they are not enough to extract the explicit form of the equation of state, i.e.,
of the function s (ε, n). In order to determine the entropy density as a function of the
state variables ε, n, a microscopic description of the matter is required, which can only
be obtained from a more fundamental approach, such as statistical mechanics.

Exercise 1.1: Prove Eqs. (1.10) – (1.12).

1.2 Relativistic ideal fluid dynamics

We start our discussion of relativistic fluid dynamics by considering the most simple ex-
ample: the case of an ideal fluid [2, 3]. An ideal fluid is defined by the assumption of
local thermodynamical equilibrium, i.e., that all fluid elements must be in thermo-
dynamic equilibrium, but not necessarily in the same thermodynamic-equilibrium state
(if they are, one speaks of global thermodynamical equilibrium). This means that all
thermodynamic state variables are functions of the space-time 4-vector xµ ≡ X = (t,x)T ,
e.g. temperature T (X), chemical potential µ(X). In addition, the fluid is described by
a collective velocity field, which is also function of space-time, u(X). From now on, the
fields T , µ, and u shall be referred to as primary fluid-dynamical variables.

1.2.1 Conserved currents in an ideal fluid

The state of a fluid is specified by the densities and currents associated to conserved
quantities, i.e., energy, momentum, and (net) particle number. For a relativistic
fluid, the state variables are the energy-momentum tensor, T µν(X), and the (net)
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1.2 Relativistic ideal fluid dynamics

particle 4-current, Nµ(X). For an ideal fluid, the general form of these currents can
be obtained by performing a Lorentz transformation to the local rest frame of the
fluid, in which u(X) = 0. In this frame, the energy-momentum tensor, T µνRF (the subscript
RF indicates the local rest-frame form of this tensor), should have the characteristic form
of a system in static equilibrium,

T µνRF =


ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 , (1.14)

i.e., in this frame there is no flow of energy (T i0RF = 0), and the force per surface element
is isotropic and equal to the thermodynamic pressure (T ijRF = δijP ). In the local rest
frame, there should also be no flow of particles and entropy and, consequently, the
(net) particle and entropy 4-currents in this frame, Nµ

RF and SµRF, respectively, take the
following simple form

Nµ
RF = (n, 0, 0, 0)T , (1.15)

SµRF = (s, 0, 0, 0)T . (1.16)

The form of these tensors in a general frame, i.e., a frame where the fluid moves with
velocity +u, can be derived by applying a Lorentz boost with velocity −u to Nµ

RF, SµRF,
and T µνRF,

Nµ = Λµ
α (−u)Nα

RF , (1.17)

Sµ = Λµ
α (−u)SαRF , (1.18)

T µν = Λµ
α (−u) Λν

β (−u)TαβRF , (1.19)

where we remember that the general form of a Lorentz boost is

Λµ
α (u) =


γ −ux −uy −uz
−ux 1 + (γ + 1)−1 uxux (γ + 1)−1 uxuy (γ + 1)−1 uxuz

−uy (γ + 1)−1 uyux 1 + (γ + 1)−1 uyuy (γ + 1)−1 uyuz

−uz (γ + 1)−1 uzux (γ + 1)−1 uzuy 1 + (γ + 1)−1 uzuz

 ,

(1.20)
with γ =

√
1 + u · u being the Lorentz gamma factor. The boost velocity is −u, because

an observer who sees the fluid move with velocity +u moves itself with velocity −u with
respect to the fluid rest frame.

Then, using a covariant notation, the conserved currents of an ideal fluid can be
expressed as

Nµ
ideal ≡ Nµ

(0) = nuµ , (1.21)

Sµideal ≡ Sµ(0) = suµ , (1.22)

T µνideal ≡ T µν(0) = εuµuν −∆µνP , (1.23)

where uµ is the velocity 4-vector,

uµ = (γ,u)T , (1.24)

5



1 Relativistic Fluid Dynamics

Note that the velocity 4-vector is constructed to satisfy the normalization condition
uµuµ = 1, and, therefore, has only three independent components. Also, in Eq. (1.23),
we introduced the projection operator onto the 3-space orthogonal to uµ,

∆µν = gµν − uµuν , (1.25)

where gµν is the space-time metric (in flat space). ∆µν satisfies all the properties expected
of a projector,

uµ∆µν = uν∆
µν = 0 , ∆µ

λ∆λν = ∆µν , (1.26)

and has the following trace,

∆µ
µ = 3 . (1.27)

Exercise 1.2: Prove Eqs. (1.21) – (1.23) by explicit computation of the right-hand sides
of Eqs. (1.17) – (1.19).

1.2.2 Equations of motion

The dynamical description of an ideal fluid is obtained using the conservation laws
of energy, momentum, and (net) particle number. These conservation laws can be
mathematically expressed in terms of the following five continuity equations,

∂µN
µ
(0) = 0 , (1.28)

∂µT
µν
(0) = 0 . (1.29)

The partial derivative ∂µ ≡ ∂/∂xµ transforms as a covariant vector under Lorentz trans-
formations and, therefore, Eq. (1.29) transforms as a contravariant 4-vector. As a 4-vector,
it is convenient to decompose this equation into a part parallel and a part orthogonal
to uµ. The component parallel to the velocity is obtained by contracting the equation
of motion with uµ, uα∂βT

αβ
(0) , while the component orthogonal to the velocity is obtained

by contracting it with ∆µν , ∆µ
α∂βT

αβ
(0) . This, together with the conservation law for (net)

particle number, leads to the equations of motion of ideal fluid dynamics,

uα∂βT
αβ
(0) = ε̇+ (ε+ P ) θ = 0 , (1.30)

∆µ
α∂βT

αβ
(0) = (ε+ P ) u̇µ −∇µP = 0 , (1.31)

∂µN
µ
(0) = ṅ+ nθ = 0 , (1.32)

where we introduced the comoving derivative uµ∂µA ≡ Ȧ of any quantity A and the
space-like gradient ∆λ

µ∂λ ≡ ∇µ. We further defined the expansion scalar, θ as the
4-divergence of the 4-velocity,

θ ≡ ∇µu
µ . (1.33)
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1.2 Relativistic ideal fluid dynamics

Exercise 1.3: Prove Eqs. (1.30) – (1.32) by inserting Eqs. (1.21), (1.23) into the conser-
vation laws (1.28), (1.29) and, in the case of energy-momentum conservation, performing
the projections onto uα and ∆µ

α.

Note that an ideal fluid is described by four fields, ε, P , n, and uµ, that contain, in
total, six independent degrees of freedom. The conservation laws, on the other hand,
provide only five equations of motion. To close this system of equations, we must
specify the equation of state of the fluid, which gives the pressure as a function of the
other thermodynamic variables,

P = P (ε, n) . (1.34)

The assumption of local thermal equilibrium guarantees the existence of this function
and, hence, assures that the equations of ideal fluid dynamics are always closed. In ideal
fluid dynamics, the equation of state essentially defines the type of fluid that is being
described – it is the only place where (some of) the microscopic properties of the system
must be taken into account.

1.2.3 Covariant thermodynamics and entropy production

Using the conserved currents, Nµ
(0), S

µ
(0), and T µν(0) , we can re-write the equilibrium ther-

modynamic relations derived in Sec. 1.1, Eqs. (1.10), (1.11), and (1.12), in a covariant
form [5, 6, 7]. For this purpose, it is convenient to introduce the following 4-vector,

βµ =
uµ

T
. (1.35)

Then, following Israel and Stewart [5, 6, 7], we postulate a covariant version of the
Gibbs-Duhem relation,

d (Pβµ) = Nµ
(0)dα− T

µν
(0)dβν , (1.36)

and of Euler’s relation,

Sµ(0) = Pβµ + T µν(0)βν − αN
µ
(0) . (1.37)

Equations (1.36) and (1.37) can then be used to derive a covariant form of the first law
of thermodynamics (1.11),

dSµ(0) = βνdT
µν
(0) − αdN

µ
(0) . (1.38)

The above covariant thermodynamic relations were constructed in a such a way that,
when contracted with the fluid 4-velocity, the usual thermodynamic relations, Eqs. (1.36),
(1.37), and (1.38), are recovered,

uµ

(
d (Pβµ)−Nµ

(0)dα + T µν(0)dβν

)
= d (Pβ)− ndα + εdβ = 0 , (1.39)

uµ

(
Sµ(0) − Pβ

µ − T µν(0)βν + αNµ
(0)

)
= s+ αn− β (ε+ P ) = 0 , (1.40)

uµ

(
dSµ(0) − βνdT

µν
(0) + αdNµ

(0)

)
= ds− βdε+ αdn = 0 , (1.41)
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1 Relativistic Fluid Dynamics

where we used that uµdu
µ = 0. Note also that the covariant thermodynamic relations do

not contain more information than the usual thermodynamic relations. The projection
of Eqs. (1.36), (1.37) and (1.38) onto the 3-space orthogonal to uµ just leads to trivial
relations,

∆α
µ

(
d (Pβµ)−Nµ

(0)dα0 + T µν(0)dβν

)
= 0 =⇒ 0 = 0 , (1.42)

∆α
µ

(
Sµ(0) − Pβ

µ − T µν(0)βν + αNµ
(0)

)
= 0 =⇒ 0 = 0 , (1.43)

∆α
µ

(
dSµ(0) − βνdT

µν
(0) + αdNµ

(0)

)
= 0 =⇒ 0 = 0 . (1.44)

The first law of thermodynamics, Eq. (1.38), leads to the following equation of motion
for the entropy 4-current,

∂µS
µ
(0) = βν∂µT

µν
(0) − α∂µN

µ
(0) , (1.45)

which, using the conservation of (net) particle number, energy, and momentum, ∂µN
µ
(0) =

∂µT
µν
(0) = 0, implies the conservation of entropy,

∂µS
µ
(0) = 0 . (1.46)

Note that the entropy conservation appeared naturally, as a consequence of (net) particle
number and energy-momentum conservation and the first law of thermodynamics. The
equation of motion for the entropy density comes directly from Eq. (1.46),

∂µS
µ
(0) = uµ∂µs+ s∂µu

µ = ṡ+ sθ = 0 . (1.47)

In this section, we introduced and derived the equations of motion of ideal fluid dy-
namics. This was done using the conservation laws expected to be valid in a fluid and the
assumption of local thermal equilibrium. In the next sections, we show how to introduce
dissipation into this scheme.

Exercise 1.4: Convince yourself of the validity of Eqs. (1.39) – (1.44) by explicit calcu-
lation.

1.3 Relativistic dissipative fluid dynamics

Relativistic ideal fluid dynamics was derived using the conservation laws, the properties
of the Lorentz transformation, and, most importantly, by imposing local thermodynamic
equilibrium. While the conservation laws and the properties of the Lorentz transformation
are always valid, the assumption of local thermodynamic equilibrium is very restrictive
and is never realized in practice. Strictly speaking, a fluid can never maintain exact local
thermodynamic equilibrium during the whole course of its dynamical evolution. In this
section, we consider a more general theory of fluid dynamics, which attempts to take into
account the dissipative processes that must happen in a fluid.

8



1.3 Relativistic dissipative fluid dynamics

Dissipative effects originate from irreversible thermodynamic processes that occur dur-
ing the motion of the fluid. In general, each fluid element is not in equilibrium with the
rest of the fluid and, in order to approach global equilibrium, it will exchange heat with
its surroundings. Furthermore, the fluid elements are in relative motion and can also
dissipate energy by friction. All these processes must be included in order to obtain a
reasonable description of a relativistic fluid.

The first to propose a covariant formulation of dissipative fluid dynamics were Eckart
[4], in 1940, and, later, Landau and Lifshitz [2], in 1959. Both theories, often called first-
order theories, are based on a covariant formulation of Navier-Stokes theory. At
that time, Navier-Stokes theory had already become a successful theory of fluid dynamics,
being able to describe a wide variety of non-relativistic fluids, from weakly coupled gases,
such as air, to strongly coupled fluids, such as water. Therefore, a relativistic extension of
Navier-Stokes theory was considered to be the most promising way to describe relativistic
viscous fluids.

However, the situation was shown to be more subtle since the relativistic version of
Navier-Stokes theory is actually intrinsically unstable [8, 9, 10, 11, 12]. The source of
such instability is well understood and will be discussed in detail in the next chapter. It
comes from the inherent acausal behavior of Navier-Stokes theory [13, 14], which allows
signals to propagate with infinite speed. In non-relativistic theories this non-intuitive
feature does not give rise to an intrinsic problem and can be ignored. On the other hand,
in relativistic systems, where causality is a physical property that is naturally preserved,
this feature leads to equations of motion that are intrinsically unstable. Nevertheless, first-
order theories are an important initial step to illustrate the basic features of relativistic
dissipative fluid dynamics and thus shall be reviewed in this section.

Just like for an ideal fluid, the basic equations of motion for dissipative fluids are given
by the conservation laws of (net) particle number and energy-momentum,

∂µN
µ = 0 , (1.48)

∂µT
µν = 0 . (1.49)

However, in the presence of dissipation, the energy-momentum tensor is no longer diagonal
and isotropic in the local rest frame. Also, due to diffusion, we expect (net) particle-
number flow to appear in the local rest frame of the fluid element. These effects must be
taken into account and are introduced in fluid dynamics by adding dissipative currents,
nµ and τµν , to the previously derived ideal currents, Nµ

(0) and T µν(0) ,

Nµ = Nµ
(0) + nµ = n0u

µ + nµ , (1.50)

T µν = T µν(0) + τµν = ε0u
µuν −∆µνP0 + τµν , (1.51)

where we indicated equilibrium quantities with a subscript “0”. Here, nµ is the particle
diffusion 4-current. In order to satisfy angular-momentum conservation, τµν is defined
to be a symmetric tensor, τµν = τ νµ. The main problem then becomes to find the dy-
namical or constitutive equations satisfied by such dissipative currents.

9



1 Relativistic Fluid Dynamics

Exercise 1.5: Ignoring spin degrees of freedom, the total angular momentum tensor is
defined as

Jλ,µν ≡ xµT λν − xνT λµ . (1.52)

Prove that total angular momentum conservation,

∂λJ
λ,µν = 0 , (1.53)

requires T µν (and thus also τµν) to be symmetric.

(Hint: use the energy-momentum conservation law (1.49).)

1.3.1 Matching conditions

The introduction of the dissipative currents renders the equilibrium variables ill-defined,
since the fluid can no longer be considered to be in local thermodynamic equilibrium. In
a viscous fluid, the thermodynamic variables, α0, β0, s0, P0, . . . , can only be defined in
terms of a fictitious equilibrium state (labeled by the subscript “0”), constructed such
that the thermodynamic relations are valid as if the fluid were in local thermodynamic
equilibrium. The first step to construct such an equilibrium state is to define n0 and ε0 as
the actual (net) particle density n and the actual energy density ε in the local rest
frame of the fluid. This is guaranteed by the so-called Landau matching conditions,

ε0 ≡ ε ≡ uνuµT
µν , (1.54)

n0 ≡ n ≡ uµN
µ . (1.55)

The matching conditions (1.54) and (1.55) are enforced by applying the following set of
constraints to the dissipative currents,

uνuµτ
µν = 0 ,

uµn
µ = 0 ⇐⇒ ∆µ

λn
λ = nµ . (1.56)

Then, using ε and n we can construct our equilibrium state. The thermodynamic en-
tropy density is determined by the equation of state of the fluid as if in thermodynamic
equilibrium,

s0 ≡ s0 (ε, n) , (1.57)

while the remaining thermodynamic variables, e.g., the thermodynamic pressure, temper-
ature, and chemical potential, are defined from the thermodynamic relations derived in
Sec. 1.1. The inverse temperature and the ratio of chemical potential over temperature
are computed using Eq. (1.13),

β0 =
∂s

∂ε

∣∣∣∣
n

, α0 =
∂s

∂n

∣∣∣∣
ε

, (1.58)

and the thermodynamic pressure is extracted via Eq. (1.10),

P0 = −ε+ T0s0 + µ0n . (1.59)

10



1.3 Relativistic dissipative fluid dynamics

Note that, in principle, the thermodynamic pressure can also be expressed as a function
of other thermodynamic variables, e.g. P0 = P0 (β0, α0).

It is important to emphasize that, while the energy and (net) particle densities are
physically well-defined, all other quantities (s0, P0, T0, µ0, . . .) are defined only in terms
of a fictitious equilibrium state and do not necessarily retain their usual physical mean-
ing. For example, the second law of thermodynamics does not constrain the production
of entropy of the fictitious state: it constrains only the production of the actual non-
equilibrium entropy of the fluid – a quantity that can be rather nontrivial to construct,
as will be discussed later in this chapter.

1.3.2 Tensor decomposition of τµν

It is convenient to decompose τµν in terms of its irreducible components, i.e., a scalar,
a 4-vector, and a traceless, symmetric second-rank tensor. This tensor decompo-
sition must respect the matching (or orthogonality) condition satisfied by τµν , Eq. (1.56).
For this purpose, we introduce yet another projection operator: the double-symmetric,
traceless rank-4 projection operator orthogonal to uµ,

∆µν
αβ =

1

2

(
∆µ
α∆ν

β + ∆µ
β∆ν

α

)
− 1

∆λ
λ

∆µν∆αβ , (1.60)

which satisfies the following properties,

∆(µν)(αβ) = ∆(αβ)(µν) ,

∆µν
λρ∆

λρ
αβ = ∆µν

αβ ,

uµ∆µναβ = gµν∆
µναβ = 0 ,

∆µν
µν = 5 . (1.61)

Then, using ∆µν and ∆µν
αβ, the tensor decomposition of τµν in its irreducible form is

implemented as

τµν ≡ −Π∆µν + 2u(µhν) + πµν , (1.62)

where the parentheses () denote the symmetrization of all Lorentz indices, a(µν) = (aµν+
aνµ)/2, and where we defined

Π ≡ −1

3
∆αβτ

αβ , hµ ≡ ∆µ
αuβτ

αβ , πµν ≡ ∆µν
αβτ

αβ . (1.63)

The scalar term, Π, is the bulk-viscous pressure, the vector term, hµ, is the energy-
diffusion 4-current, and the second-rank tensor, πµν , is the shear-stress tensor. The
properties of the projection operators ∆µ

ν and ∆µν
αβ given in Eqs. (1.26) and (1.61) imply

that hµ and πµν satisfy

hµ = ∆µ
νh

ν ⇐⇒ uµh
µ = 0 , (1.64)

πµν = π〈µν〉 ⇐⇒ uµπ
µν = 0 , (1.65)

πµµ = 0 , (1.66)

11



1 Relativistic Fluid Dynamics

where the brackets 〈〉 denote the following projection of a second-rank tensor, A〈µν〉 ≡
∆µν
αβA

αβ. In summary, the fields Π, hµ, nµ, and πµν are expressed in terms of Nµ and T µν

as

Π = −P0 −
1

3
∆µνT

µν , (1.67)

hµ = uα∆µ
βT

αβ , (1.68)

nµ = ∆µ
αN

α , (1.69)

πµν = T 〈µν〉 . (1.70)

Note that T µν is a symmetric second-rank tensor and, thus, Nµ and T µν have 14
independent components (four from Nµ and ten from T µν). In order to satisfy their or-
thogonality to uµ, nµ and hµ can only have three independent components each. The
shear-stress tensor is symmetric, traceless, and orthogonal to uµ and, therefore, can have
only five independent components. Together with uµ, ε, n, and Π, which have in total six
independent components, we find a total of 17 independent components, three more than
expected. This happened because, so far, the velocity field itself has not been specified,
being introduced just as a general normalized 4-vector. The definition of the velocity field
will provide the three missing constraints that will reduce the number of independent
components to the correct value.

Exercise 1.6: Prove Eqs. (1.61), as well as Eqs. (1.63) by explicitly inserting Eq. (1.62)
on the right-hand sides.

1.3.3 Definition of the local rest frame and equations of motion

The definition of the velocity field is an important step in deriving fluid dynamics. For
ideal fluids, the local rest frame was implicitly defined as the frame in which there is
no flow of energy and (net) particle number. Due to the presence of energy and particle
diffusion in viscous fluids, this definition is no longer possible. From a mathematical point
of view, the velocity can be defined in numerous ways. From the physical perspective,
there are, however, two natural choices. The Landau frame [2], in which the velocity is
defined by the flow of the total energy,

uµT
µν = εuν , (1.71)

and the Eckart frame [3, 4], in which the velocity is specified by the flow of (net) particle
number,

Nµ = nuµ . (1.72)

If the system has more than one type of particle (or charge), the Eckart frame must be
defined by selecting one of these particle (or charge) types.

Both choices of frame impose different constraints on the dissipative currents introduced
in this section. In the Landau frame, the energy diffusion vanishes,

hµ = 0 , (1.73)

12



1.3 Relativistic dissipative fluid dynamics

while in the Eckart frame the particle diffusion is zero,

nµ = 0 . (1.74)

In other words, in the Landau frame the velocity field is fixed to eliminate any diffusion
of energy while in the Eckart frame it is defined to eliminate any diffusion of particles. In
this lecture series, we shall always use the Landau frame, Eq. (1.71), and, therefore, the
conserved currents take the following simpler form

Nµ = nuµ + nµ , (1.75)

T µν = εuµuν −∆µν (P0 + Π) + πµν . (1.76)

Note that both the Landau and the Eckart choice of frame reduce the number of inde-
pendent variables to 14, as advertised at the end of the last section.

As for an ideal fluid, we decompose Eq. (1.49) into a part parallel and another one
orthogonal to uµ. As shown in the last section, this is done by projecting and contracting
Eq. (1.49) with uµ and ∆µν , i.e., by taking uα∂βT

αβ and ∆µ
α∂βT

αβ, respectively. Together
with Eqs. (1.48), (1.75), and (1.76), this procedure leads to the equations of motion of
the fluid,

uα∂βT
αβ = ε̇+ (ε+ P0 + Π) θ − παβσαβ = 0 , (1.77)

∆µ
α∂βT

αβ = (ε+ P0 + Π) u̇µ −∇µ (P0 + Π) + ∆µ
α∂βπ

αβ = 0 , (1.78)

∂µN
µ = ṅ+ nθ + ∂µn

µ = 0 , (1.79)

where we defined the shear tensor

σµν = ∂〈µuν〉 =
1

2
(∇µuν +∇νuµ)− 1

3
∆µν∇λu

λ . (1.80)

Note that the quantities n, ε, P0, uµ, Π, nµ, and πµν introduced in this section were
defined from a strict mathematical perspective via the most general tensor decomposition
allowed by symmetry. The conservation laws, Eqs. (1.48) and (1.49), the definition of
the fictitious equilibrium state, and the definition of the velocity field are also general
and valid regardless of the whether the system is in the fluid-dynamical regime (i.e., not
far from local thermodynamical equilibrium). Thus, by writing down any of the above
equations, we have not, by any means, derived fluid dynamics. In order to derive the
complete equations of dissipative fluid dynamics, one still has to provide an additional
nine relations that will close Eqs. (1.77), (1.78), and (1.79). In the end, this corresponds
to finding dynamical or constitutive relations satisfied by the dissipative currents Π,
nµ, and πµν . Ideal fluid dynamics, discussed in the previous section, corresponds to a
trivial example of this procedure, in which the dissipative currents are simply set to zero.

Exercise 1.7: Prove Eqs. (1.77) – (1.79), extending Exercise 1.3 to dissipative fluids.
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1 Relativistic Fluid Dynamics

1.3.4 Relativistic Navier-Stokes theory

In the presence of dissipative currents the entropy is longer conserved. Deriving the
equation for the entropy 4-current is not trivial for a viscous fluid, since a priori we do
not know the form of this current. For now, let us take the same steps as in the ideal
fluid case and see where we arrive. We start by taking Eq. (1.45),

∂µS
µ
(0) = β0uν∂µT

µν
(0) − α0∂µN

µ
(0) , (1.81)

which remains valid in a viscous fluid since, as explained in Sec. 1.3.1, the equilibrium
variables and, consequently, the equilibrium currents, were constructed to satisfy thermo-
dynamic relations as if in equilibrium. Now, however, the equilibrium part of the currents
are not conserved, ∂µN

µ
(0) = −∂µnµ 6= 0 and uν∂µT

µν
(0) = −Πθ+πµνσµν 6= 0, cf. Eqs. (1.77)

and (1.79), and in a viscous fluid Eq. (1.81) leads to

∂µS
µ
(0) = α0∂µn

µ + β0 (−Πθ + πµνσµν) . (1.82)

By decomposing the first term on the right-hand side as α0∂µn
µ = ∂µ (α0n

µ)−nµ∇µα0,
Eq. (1.82) can be written in a more convenient form,

∂µ

(
Sµ(0) − α0n

µ
)

= −nµ∇µα0 − β0Πθ + β0π
µνσµν ≡ Q . (1.83)

It is very tempting to identify the term on the left-hand side of Eq. (1.83) as the 4-
divergence of the (off-equilibrium) entropy 4-current

Sµ ≡ Sµ(0) − α0n
µ = s0u

µ − α0n
µ , (1.84)

and the terms on the right-hand side, Q, as the source terms for entropy production. Note,
however, that this is not necessarily the case. Nevertheless, this was the identification
proposed by Eckart and by Landau and Lifshitz and we shall consider it here in order to
derive relativistic Navier-Stokes theory.

Relativistic Navier-Stokes theory is then obtained by applying the second law of thermo-
dynamics to each fluid element, i.e., by requiring that the entropy production obtained in
Eq. (1.83) must always be positive semi-definite, Q ≥ 0. The simplest way to satisfy this
condition for all possible fluid configurations is to assume that the bulk-viscous pressure,
the particle-diffusion 4-current, and the shear-stress tensor are linearly proportional
to θ, ∇µα0, and σµν , respectively,

Π = −ζθ , (1.85)

nµ = κ∇µα0 , (1.86)

πµν = 2ησµν . (1.87)

The proportionality coefficients ζ, κ, and η are the coefficients of bulk viscosity,
particle diffusion, and shear viscosity, respectively. Then, substituting Eqs. (1.85),
(1.86), and (1.87) into Eq. (1.83), we see that the entropy production becomes a quadratic
function of the dissipative currents

Q =
β0

ζ
Π2 − 1

κ
nµnµ +

β0

2η
πµνπ

µν . (1.88)
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1.3 Relativistic dissipative fluid dynamics

Note that nµnµ is negative (nµ is a space-like vector) while πµνπ
µν is positive and, there-

fore, as long as ζ, κ, η ≥ 0, Q is, in fact, always positive semi-definite.
The equations of fluid dynamics are obtained by substituting Eqs. (1.85), (1.86), and

(1.87) into the conservation laws, Eqs. (1.77), (1.78), and (1.79),

ε̇ = − (ε+ P0 − ζθ) θ + 2ησαβσ
αβ , (1.89)

(ε+ P0 − ζθ) u̇µ = ∇µP0 −∇µ (ζθ)− 2∆µ
α∂β

(
ησαβ

)
, (1.90)

ṅ = −nθ − ∂µ (κ∇µα0) . (1.91)

The above equations are known as the relativistic Navier-Stokes equations, as ob-
tained by Landau and Lifshitz [2]. A similar theory was obtained independently by Eckart
[4], using a different definition of the local rest frame. In this formulation, the state of a
dissipative fluid remains being described by the same variables as in the case of an ideal
fluid, i.e., the primary fluid-dynamical variables α0, β0, and uµ. The only difference is the
existence of dissipative processes, corresponding to new forms of particle and energy-
momentum transfer, which occur due to gradients of the primary fluid-dynamical
variables.

As already mentioned, Navier-Stokes theory is acausal and, consequently, unstable.
Thus, it is unable to describe any relativistic fluid existing in Nature. The source of
the acausality can be understood from the constitutive relations satisfied by the dissi-
pative currents, Eqs. (1.85), (1.86), and (1.87). Such linear relations imply that any
inhomogeneity of α0, β0, and uµ, will instantaneously give rise to a dissipative current.
This instantaneous creation of currents from (space-like) gradients of the primary fluid-
dynamical variables renders the equations of motion parabolic. In a relativistic theory
this leads to instabilities, as will be discussed in the next chapter.

1.3.5 Gradient expansion and Navier-Stokes theory
05/10/2022

Navier-Stokes theory can also be derived (and extended) via the so-called gradient ex-
pansion [15, 16]. In this framework, the bulk-viscous pressure, the particle-diffusion
4-current, and the shear-stress tensor are assumed to be expressable solely in terms of
powers of gradients of the primary fluid-dynamical variables α0, β0, and uµ. The
dissipative currents can then be schematically written as the series

Π = λ
(1)
Π O1 + λ

(2)
Π O2 + · · · , (1.92)

nµ = λ(1)
n O

µ
1 + λ(2)

n O
µ
2 + · · · , (1.93)

πµν = λ(1)
π O

µν
1 + λ(2)

π O
µν
2 + · · · , (1.94)

where the quantities (O1, Oµ1 , Oµν1 ) and (O2, Oµ2 , Oµν2 ) correspond to terms of first and
second order in gradients of α0, β0, and uµ, respectively, and the dots denote possible
higher-order gradient terms.

It is important to remark that when the system exhibits a clear separation between the
typical microscopic and macroscopic scales, λ and L, respectively, it may possible
to truncate the expansion on the right-hand sides of Eqs. (1.92), (1.93), and (1.94). The
microscopic scale can, for example, be the mean free path for dilute gases or the inverse
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temperature for conformal fluids, while a macroscopic scale is given by typical time
or length scales over which a certain primary fluid-dynamical variable varies, e.g.,
L ∼ [(∂a)/a]−1, with a = α0, β0, or uµ. The terms O1, Oµ1 , and Oµν1 are linearly
proportional to a gradient of a macroscopic variable, and thus are of order ∼ L−1. Every
additional derivative brings in another inverse power of L and, thus, On, Oµn, Oµνn ∼ L−n.

The microscopic scale λ is contained in the coefficients, λ
(n)
Π , λ

(n)
n , and λ

(n)
π . Up to some

overall power of λ (which restores the correct scaling dimension), λ
(n)
Π , λ

(n)
n , λ

(n)
π ∼ λn.

Therefore, the terms (O1, Oµ1 , Oµν1 ) and (O2, Oµ2 , Oµν2 ), multiplied by their corresponding
coefficients in Eqs. (1.92), (1.93), and (1.94) are of order λ/L and (λ/L)2, respectively.
Subsequent terms would be of higher order in this ratio. This is nothing but a series in
powers of the so-called Knudsen number

Kn ≡ λ

L
. (1.95)

If Kn � 1 and this series converges, the gradient expansion of the dissipative currents
can be truncated at a given order and one obtains a closed macroscopic theory for them.
Ideal fluid dynamics corresponds to the zeroth-order truncation of this series, i.e.,
when no gradient terms are considered. The first-order truncation of the gradient
expansion is Navier-Stokes theory, as will be shown below. Higher-order truncations
would lead to the relativistic Burnett and super-Burnett equations and so on. We
note that the convergence of the gradient expansion is not well established and is a topic
that is still being intensely investigated [17].

The first order of the gradient expansion can be obtained by constructing all possible
tensors that can be formed from the first-order derivatives of α0, β0, and uµ. These can
be easily obtained and are

∂µα0 , ∂µβ0 , and ∂µuν . (1.96)

Next, using these gradients one has to construct tensors that have the same properties
as the dissipative currents. There must be a scalar, such as the bulk-viscous pressure,
a 4-vector orthogonal to uµ, such as the particle-diffusion 4-current, and a symmetric,
traceless second-rank tensor orthogonal to uµ, such as the shear-stress tensor. The only
possibilities are

Scalar : θ = ∇µu
µ , (1.97)

Vector : Iµ ≡ ∇µα0 , Jµ ≡ ∇µβ0 , (1.98)

Tensor : σµν ≡ ∂〈µuν〉 =
1

2
(∇µuν +∇νuµ)− 1

3
∆µνθ . (1.99)

Then, the most general first-order terms allowed by symmetry are

O1 = θ , (1.100)

Oµ1 = Iµ + γJµ , (1.101)

Oµν1 = σµν , (1.102)

where the constant γ is introduced in order to restore the correct dimension.
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In order to respect the second law of thermodynamics, discussed in the previous section,
the transport coefficient γ must always be zero, γ = 0. This can be seen as follows. One
can rewrite the Gibbs-Duhem relation (1.12) with the help of the Euler equation (1.10)
in the form

dβ0 = h−1
0 dα0 −

β0

ε+ P0

dP0 , (1.103)

where h0 ≡ (ε + P0)/n is the specific enthalpy. Then, using the hydrodynamic equation
(1.78),

Jµ = h−1
0 Iµ − β0u̇

µ +O2 , (1.104)

where the second-order terms involve gradients of dissipative currents or products of dis-
sipative currents with gradients of primary fluid-dynamical variables. Employing Eqs.
(1.93), (1.101) the first term in the entropy-production equation (1.83) would be ∼
−λ(1)

n

[(
1 + γh−1

0

)
Iµ − γβ0u̇

µ
}
Iµ, which is in general no longer positive definite, unless

γ = 0.
Therefore, the most general relations satisfied by Π, nµ, and πµν , up to first order in

Kn, are

Π = λ
(1)
Π θ ,

nµ = λ(1)
n Iµ ,

πµν = λ(1)
π σµν ,

which corresponds to the relativistic Navier-Stokes theory [2], with the bulk-viscosity
coefficient, the diffusion coefficient, and the shear-viscosity coefficient being identified as
ζ ≡ −λ(1)

Π , κ ≡ λ
(1)
n , and η ≡ λ

(1)
π /2, respectively.

In the framework of the gradient expansion, the relativistic Navier-Stokes theory can
be extended by including terms of second order in gradients of α0, β0, and uµ. In order
to do so, one has to obtain all possible terms that can contribute to O2, Oµ2 , and Oµν2 .
These are

Scalar : ωµνω
µν , σµνσ

µν , θ2 , IµI
µ , JµJ

µ , IµJ
µ , ∇µI

µ , ∇µJ
µ ,

Vector : σµνIν , σ
µνJν , I

µθ , Jµθ , ωµνIν , ω
µνJν , ∆µ

α∂νσ
αν , ∇µθ ,

Tensor : ω
〈µ

λ ω ν〉λ , θσµν , σλ〈µσ
ν〉
λ , σ

〈µ
λ ω

ν〉λ , I〈µ I ν〉 , J 〈µJ ν〉 ,

I〈µJ ν〉 , ∇〈µ I ν〉 , ∇〈µJ ν〉 , (1.105)

where we introduced the fluid vorticity tensor,

ωµν ≡ 1

2
(∇µuν −∇νuµ) . (1.106)

Then, the most general second-order terms allowed by symmetry are

λ
(2)
Π O2 = ζ1ωµνω

µν + ζ2σµνσ
µν + ζ3θ

2 + ζ4IµI
µ + ζ5JµJ

µ + ζ6IµJ
µ

+ζ7∇µI
µ + ζ8∇µJ

µ , (1.107)

λ(2)
n O

µ
2 = κ1σ

µνIν + κ2σ
µνJν + κ3I

µθ + κ4J
µθ + κ5ω

µνIν + κ6ω
µνJν

+κ7∆µ
α∂νσ

αν + κ8∇µθ , (1.108)

λ(2)
π O

µν
2 = η1ω

〈µ
λ ω ν〉λ + η2θσ

µν + η3σ
λ〈µσ

ν〉
λ + η4σ

〈µ
λ ω

ν〉λ + η5I
〈µ I ν〉

+η6J
〈µJ ν〉 + η7I

〈µJ ν〉 + η8∇〈µ I ν〉 + η9∇〈µJ ν〉 , (1.109)
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where we introduced additional transport coefficients, ζi, κi, and ηi. By including
the above terms in the expressions for the dissipative currents, Eqs. (1.92), (1.93), and
(1.94), we obtain the relativistic Burnett equations [16],

Π = −ζθ + ζ1ωµνω
µν + ζ2σµνσ

µν + ζ3θ
2 + ζ4IµI

µ + ζ5JµJ
µ + ζ6IµJ

µ

+ζ7 ∇µI
µ + ζ8∇µJ

µ , (1.110)

nµ = κIµ + κ1σ
µνIν + κ2σ

µνJν + κ3I
µθ + κ4J

µθ + κ5ω
µνIν + κ6ω

µνJν

+κ7∆µ
α∂νσ

αν + κ8∇µθ , (1.111)

πµν = 2ησµν + η1ω
〈µ

λ ω ν〉λ + η2θσ
µν + η3σ

λ〈µσ
ν〉
λ + η4σ

〈µ
λ ω

ν〉λ + η5I
〈µ I ν〉

+η6J
〈µJ ν〉 + η7I

〈µJ ν〉 + η8∇〈µ I ν〉 + η9∇〈µJ ν〉 . (1.112)

In this section, we showed how to extend and derive Navier-Stokes theory via the gra-
dient expansion. Note, however, that these extensions remain acausal and unstable and
have no practical purpose. As a matter of fact, the Burnett equations are unstable even
in the non-relativistic regime [18].

Exercise 1.8: Check the validity of the thermodynamic relation (1.103).

1.4 Causal fluid dynamics

Many theories have been developed to incorporate dissipative effects in fluid dynamics
preserving causality: Grad-Israel-Stewart theory [5, 6, 7, 19], divergence-type theo-
ries [20, 21, 22], extended irreversible thermodynamics [23, 24, 25, 26, 27], Carter’s
theory [28], Öttinger-Grmela theory [29], among others [30, 31]. In Sec. 1.5 we shall
briefly review Israel and Stewart’s approach.

However, before explaining Israel-Stewart theory, it is useful to discuss a more ad hoc
approach to render Navier-Stokes theory causal and stable [32]. For the sake of simplicity,
we first illustrate this method using the simple example of a transport equation that shares
the same problems as Navier-Stokes theory: the heat-conduction equation.

1.4.1 Diffusion equation and acausality in heat conduction

The fundamental problem of the diffusion equation comes from the fact that it is a
parabolic equation, allowing for signals that can propagate with infinite speed [25,
26, 27, 33, 34, 35]. In the non-relativistic case, this problem was first addressed by Catta-
neo [36, 37] and applied to heat conduction. Cattaneo argued that the problem of acausal
propagation in the diffusion equation

∂tA = D∇2A , (1.113)

can be corrected by introducing a term with a second-order time derivative, i.e.,

τR∂
2
tA+ ∂tA = D∇2A , (1.114)
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1.4 Causal fluid dynamics

thereby converting a parabolic equation to a hyperbolic one. Above, we introduced
the diffusion and the relaxation-time coefficients, D and τR, respectively. Equation
(1.114) is often referred to as telegraph equation and, for suitable choices of D and τR,
can lead to causal signal propagation. As a matter of fact, the maximum propagation
speed of signals in this theory can be proven to be [38],

vmax =
√
D/τR . (1.115)

Therefore, as long as D/τR ≤ 1, the telegraph equation is causal. On the other hand,
in the limit τR → 0, in which the diffusion equation is recovered, the propagation speed
diverges and the theory becomes acausal.

Next, we consider the heat-conduction problem as an example to understand the phys-
ical origin of the telegraph equation. The diffusion equation used to describe heat con-
duction is constructed from two basic features. One is the energy-balance equation,

ρc∂tT +∇ · J = 0 , (1.116)

where T is the temperature, J is the heat flux, ρ is the mass density, and c is the
specific heat capacity of the material in question. The other ingredient is Fourier’s
law,

J = −$∇T , (1.117)

where $ is the heat conductivity. Then, Eqs. (1.116) and (1.117) can be combined to
eliminate J from the differential equation (1.116) and describe heat conduction via the
following diffusion equation,

∂tT =
$

ρc
∇2T , (1.118)

where, for the sake of simplicity, we assumed that ρ and $ are spatially constant in the
material.

The source of acausality cannot be the energy-balance equation, which is the direct con-
sequence of a conservation law. Then, it must be Fourier’s law. Heat conduction should
always be induced by an inhomogeneous temperature profile. However, Fourier’s law is
only an approximation of this process. It does not contain any inertial effects and, conse-
quently, certain perturbations in the temperature distribution are felt instantaneously
at every point of the system, i.e., according to Eq. (1.118) every point in the material
heats at the same time, no matter how distant from the heat source.

Therefore, even though very successful in non-relativistic applications, Fourier’s law
cannot be employed in the relativistic limit: in relativistic theories, causality is a physical
principle that is naturally preserved by the Lorentz transformations and dictates that the
propagation of any current must happen in a nonzero interval of time. This feature can
be included in the description of heat conduction via linear response theory, which
prescribes a more general expression for J [39],

J(t) = −
∫ t

dsG(t− s)∇T (s) , (1.119)

where G(t) is the corresponding retarded Green function. The Green function includes
the microscopic time scales that describe the creation of the heat flux from temperature
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gradients. In non-relativistic systems in which the separation between the microscopic
and macroscopic time scales of the system are sufficiently large, the time dependence of
the Green function can be approximated by a Dirac delta function, G(t) ∼ δ(t), and we
recover Fourier’s law. However, when the microscopic and macroscopic time scales are
not separated by orders of magnitude, the transient dynamics of the heat flux must
be explicitly described and the time dependence of G(t) must be taken into account. In
relativistic systems, such microscopic time scales must always be considered in order to
preserve causality. When deriving fluid dynamics in the next chapters, we shall address
this topic within a more formal framework.

The simplest choice for G(t) is the exponential ansatz (this choice can actually be
derived in the framework of kinetic theory) [40],

G(t) =
$

τR
e−t/τR , (1.120)

where τR is the heat-flux relaxation time. Then, by taking the time derivative of Eq.
(1.119) and substituting this ansatz, we obtain the following equation of motion for J,

τR∂tJ(t) + J(t) = −$∇T (t) . (1.121)

This equation is often referred to as Maxwell-Cattaneo equation. In this theory, the
heat flux is not created instantaneously from temperature inhomogeneities. For example,
when ∇T = 0,

τR∂tJ(t) + J(t) = 0 , (1.122)

the heat flux does not vanish instantaneously, as happened in Fourier’s law, but relaxes
exponentially to zero on times scales given by the heat-flux relaxation time τR.

By using the energy-balance equation (1.116), we can eliminate J from the divergence
of the Maxwell-Cattaneo equation (1.121), and obtain the telegraph equation for the
temperature T ,

τR∂
2
t T + ∂tT =

$

ρc
∇2T . (1.123)

Note that, in this case, the diffusion equation becomes the asymptotic limit of the
telegraph equation, attained only for times much longer than the heat-flux relaxation
time (as long as ∇T varies slowly in time). As mentioned before, Eq. (1.123) is causal
as long as √

$

ρcτR
6 1 . (1.124)

1.4.2 Transient theory of fluid dynamics

The same idea as explained in the previous section can be applied to render Navier-Stokes
theory causal. In Sec. 1.3.4, Navier-Stokes theory was constructed from the conservation
laws of (net) particle number, energy, and momentum, and the constitutive relations
satisfied by the dissipative currents, Eqs. (1.85), (1.86), and (1.87). The conservation
laws come from general physical principles, valid even outside the fluid-dynamical regime,
and cannot be modified. Therefore, in order to improve on Navier-Stokes theory, we
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must extend the constitutive relations (1.85), (1.86), and (1.87). We have already argued
that such relations are the source of causality violations in Navier-Stokes theory since,
as happens with Fourier’s law, they allow for the instantaneous creation of dissipative
currents from gradients of α0, β0, and uµ. In this section, we show how to correct this
unphysical behavior using the same arguments as previously applied to heat conduction:
the inclusion of a time delay in the creation of the dissipative currents from gradients
of the primary fluid-dynamical variables.

In the heat-conduction case, inertial effects on the creation of heat flux from tem-
perature inhomogeneities were included by introducing a term with a first-order time
derivative of J in Fourier’s law, giving rise to a causal transport equation for heat
conduction, Eq. (1.122). Similarly, relaxation effects can be introduced in Navier-Stokes
theory by adding a term of first order in the comoving derivative of each dis-
sipative current to the constitutive relation satisfied by this current, i.e., Π̇, ∆µ

αṅ
α,

and ∆µν
αβπ̇

αβ. Then, instead of Navier-Stokes theory, we obtain the following transport
equations for Π, nµ, and πµν ,

τΠΠ̇ + Π = −ζθ + . . . , (1.125)

τn ∆µ
αṅ

α + nµ = κ∇µα0 + . . . , (1.126)

τπ ∆µν
αβπ̇

αβ + πµν = 2η σµν + . . . , (1.127)

where we introduced the bulk relaxation time, τΠ, the diffusion relaxation time, τn,
and the shear relaxation time, τπ. The dots denote possible nonlinear terms involving
the fluid-dynamical quantities and their gradients.

In this formulation, the fluid-dynamical dissipative currents appear as independent
dynamical variables, which relax to the values of Navier-Stokes theory on charac-
teristic time scales given by the relaxation times τΠ, τn, and τπ. Thus, unlike for the
gradient expansion, the dissipative currents in this theory do not have to be zero in the ab-
sence of gradients. Instead, they decay to zero on the time scales given by the relaxation
times. This type of formalism was referred to as transient theory of fluid dynamics
by Israel and Stewart [5], since it describes this relaxation (or transient) process of each
dissipative current towards its respective (asymptotic) Navier-Stokes value.

One of the features of transient fluid dynamics is that it reduces to Navier-Stokes theory
in the limit of vanishing relaxation times. In other words, in Navier-Stokes theory the
dissipative currents relax instantaneously to their Navier-Stokes values (also referred to as
fluid-dynamical forces), which leads to a violation of causality. In many non-relativistic
fluids, the relaxation times are very short, and such transient dynamics can be neglected.
In this case, the dissipative currents can actually be well approximated by their Navier-
Stokes solution. Nevertheless, in the relativistic case, this approximation is not possible
since it will render the equations of motion parabolic and unstable.

For fluid dynamics to be causal it is therefore necessary that the relaxation times
assume a non-zero value, but this is not sufficient. As will be shown in the next chapter
(see also Refs. [13, 14]) causality imposes a stronger constraint for transient theories: the
ratio of the relaxation times to their respective viscosity coefficients must exceed certain
values. It will be also shown that, for relativistic fluids, causality implies stability of
the fluid-dynamical equations.
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Equations (1.125) – (1.127) correspond to the type of relativistic fluid-dynamical theory
that we expect to derive from microscopic theory, including all the nonlinear and higher-
order terms that might appear on the right-hand side. This will be shown explicitly in
the later chapters of this lecture series.

1.5 Transient thermodynamics and Israel-Stewart theory

It is also possible to derive causal fluid-dynamical equations, with the same structure as
Eqs. (1.125) – (1.127), from the second law of thermodynamics. In this section, we
review this derivation as first proposed by Israel and Stewart [5, 7]. The main idea of their
approach is to apply the second law of thermodynamics to a more general expression of the
non-equilibrium entropy 4-current. In equilibrium, the entropy 4-current was expressed
exactly in terms of the primary fluid-dynamical variables, α0, β0, and uµ. When the fluid
deviates from equilibrium, the situation becomes more complicated. Strictly speaking,
the entropy 4-current should depend on a very large number of independent dynamical
variables (for a dilute gas, these correspond to all the moments of the Boltzmann equation)
that are needed in order to characterize the complicated state of a non-equilibrium system.
However, it is reasonable to assume that, as the system approaches equilibrium, the
number of dynamical variables needed to describe the state of the fluid gradually decreases,
until it reaches the variables required by the equilibrium state, α0, β0, and uµ.

In the previous section, we showed that, in order to render the fluid-dynamical equa-
tions causal, the dissipative currents must be promoted to independent dynamical
variables. Therefore, we expect that a more realistic description of the entropy 4-current
can be obtained by considering it to be a function not only of the primary fluid-dynamical
variables, but also of the dissipative currents,

Sµ = Sµ(α0, β0, u
µ,Π, nµ, πµν) . (1.128)

Mathematically, it is further assumed that the entropy 4-current has the following prop-
erties: (i) it is additive; (ii) it is a convex function of the equilibrium variables and
the dissipative currents; and (iii) the corresponding entropy production is locally
positive. We remark that, while here these properties enter as hypothesis, they can be
rigorously derived in the framework of kinetic theory [5, 6, 7].

Then, the entropy 4-current can be expanded in terms of powers of the dissipative
currents around a (fictitious) equilibrium state [5, 7],

Sµ = Sµ(0) − α0n
µ +Qµ +O3 , (1.129)

where O3 denotes terms of third order or higher in the dissipative currents and

Qµ ≡ −1

2
uµ
(
δ0Π2 − δ1nαn

α + δ2παβπ
αβ
)
− γ0Πnµ − γ1π

µ
νn

ν (1.130)

is of second order, Qµ ∼ O2. The expansion coefficients, δ0, δ1, δ2, γ0, and γ1, are
complicated functions of the temperature and chemical potential of the (fictitious) equi-
librium state and can only be obtained by matching this expansion with the underlying
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1.5 Transient thermodynamics and Israel-Stewart theory

microscopic theory. Note that the entropy 4-current used to derive relativistic Navier-
Stokes theory is recovered by taking Qµ = 0. It is important to remember that Qµ is not
orthogonal to the fluid 4-velocity and, consequently,

s ≡ uµS
µ = s0 + uµQ

µ 6= s0 . (1.131)

That is, the non-equilibrium entropy density in the local rest frame, s, does not correspond
to the entropy density computed using the (fictitious) equilibrium state, s0 (ε, n).

The existence of second-order contributions to the entropy 4-current will affect all
previous conclusions drawn from the second law of thermodynamics, which can then
be understood to be valid only up to first order in the dissipative currents (hence the
name first-order theory). Next, we re-calculate the entropy production using the more
general entropy 4-current introduced in Eq. (1.129),

∂µS
µ = β0uν∂µT

µν
(0) − α0∂µN

µ
(0) − ∂µ (α0n

µ) + ∂µQ
µ , (1.132)

where we employed Eq. (1.45). The conservation laws (1.77) and (1.79) lead to the
following result,

∂µS
µ = −β0Πθ + β0π

µνσµν − nµ∇µα0 + ∂µQ
µ . (1.133)

Using Eq. (1.130), we can derive all terms originating from ∂µQ
µ,

∂µQ
µ = −δ0ΠΠ̇ + δ1nµṅ

µ − δ2πµν π̇
µν − 1

2

(
Π2δ̇0 − nµnµδ̇1 + πµνπ

µν δ̇2

)
−1

2

(
δ0Π2 − δ1nµn

µ + δ2πµνπ
µν
)
θ − γ0Π∂µn

µ − γ0n
µ∇µΠ− Πnµ∇µγ0

−γ1πµν∇〈µnν〉 − πµνn〈µ∇ν〉γ1 − γ1nν∂µπ
µν . (1.134)

Then, substituting Eq. (1.134) into Eq. (1.133), we obtain the more general entropy-
production equation

∂µS
µ = β0Π

(
−θ − δ0

β0

Π̇− 1

2β0

Πδ̇0 −
1

2β0

δ0Πθ − γ0

β0

∂µn
µ − 1− r

β0

nµ∇µγ0

)
+nµ

(
−∇µα0 + δ1∆µ

αṅ
α +

nµ

2
δ̇1 +

δ1

2
nµθ − γ0∇µΠ− rΠ∇µγ0 − γ1∂νπ

µν − yπµν∇νγ1

)
+β0πµν

(
σµν − δ2

β0

∆µν
αβπ̇

αβ − 1

2β0

πµν δ̇2 −
1

2β0

δ2π
µνθ − γ1

β0

∇〈µnν〉 − 1− y
β0

n〈µ∇ν〉γ1

)
,

(1.135)

where r, y are arbitrary constants.

As argued before, the only way to explicitly satisfy the second law of thermodynamics is
to assure that the entropy production is a positive semi-definite quadratic function
of the dissipative currents, i.e.,

∂µS
µ ≡ β0$ΠΠ2 −$nnµn

µ + β0$ππµνπ
µν , (1.136)
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where $Π, $n, $π ≥ 0. This further implies that the dissipative currents must satisfy
the following dynamical equations

δ0

β0

Π̇ +$ΠΠ = −θ − 1

2β0

Πδ̇0 −
1

2β0

δ0Πθ − γ0

β0

∂µn
µ − 1− r

β0

nµ∇µγ0 ,

δ1∆µ
αṅ

α +$nn
µ = ∇µα0 −

1

2
nµδ̇1 −

δ1

2
nµθ + γ0∇µΠ + rΠ∇µγ0 + γ1∂νπ

µν

+yπµν∇νγ1 ,
δ2

β0

∆µν
αβπ̇

αβ +$ηπ
µν = σµν − 1

2β0

πµν δ̇2 −
1

2β0

δ2π
µνθ − γ1

β0

∇〈µnν〉 − 1− y
β0

n〈µ∇ν〉γ1 ,

(1.137)

which are relaxation-type equations, similar to those conjectured in the last section, i.e.,
Eqs. (1.125) – (1.127). By comparison with those equations, we find $Π, $n, and $π to
be related to the viscosity and diffusion coefficients,

$Π =
1

ζ
, $n =

1

κ
, $π =

1

2η
, (1.138)

and identify the relaxation times as

τΠ = ζ
δ0

β0

, τn = κδ1 , τπ = 2η
δ2

β0

. (1.139)

Since the relaxation times must be positive, the expansion coefficients δ0, δ1, and δ2 must
all be larger than zero. Furthermore, we found some of the nonlinear terms that may
appear as source terms in the transient equations of motion for the dissipative currents.
We shall see in the next chapters, when we derive the equations of fluid dynamics from
microscopic theory, that there are still other nonlinear terms that are missing in this type
of derivation. A derivation from microscopic theory also allows to uniquely fix the, as of
yet, arbitrary constants r, y.
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2 Linear Stability and Causality

It was emphasized in the previous chapter that relativistic generalizations of Navier-
Stokes theory, derived by Landau and Lifshitz [1] and, independently, by Eckart [2], are
ill-defined, containing unphysical instabilities when perturbed around an arbitrary global-
equilibrium state [3, 4, 5]. Such instabilities are intrinsically related to the acausal nature
of Navier-Stokes theory, which allows for perturbations that propagate with an infinite
speed. These fundamental problems prohibit the application of relativistic Navier-Stokes
theory to describe any practical fluid-dynamical problem, may it be in the description of
neutron-star mergers or in the description of the quark-gluon plasma produced in heavy-
ion collisions.

In order to address these fundamental issues, Israel and Stewart constructed stable and
causal theories of relativistic fluid dynamics, following the procedure initially developed
by H. Grad [6] for non-relativistic systems. Israel and Stewart performed this task in two
distinct ways [7]. The first is a phenomenological derivation, based on the second law of
thermodynamics, which was discussed in detail in Chapter 1. The second is a microscopic
derivation starting from the relativistic Boltzmann equation, which will be discussed thor-
oughly in one of the following chapters. Similar theories have been widely developed in
the past decades [8, 9, 10, 11, 12, 13, 14, 15, 16], but all carry the same fundamental
aspect: in contrast to Navier-Stokes theory, such causal theories of fluid dynamics include
in their description the transient dynamics of the non-conserved dissipative currents. For
this reason, they were initially named by Israel and Stewart as transient fluid dynamics
(nowadays, they are often referred to as second-order theories).

However, it is important to remark that the theory formulated by Israel and Stewart is
not guaranteed to be causal and stable. As was first shown by Hiscock, Lindblom, and
later by Olson, such transient theories of fluid dynamics are only causal and stable if
their transport coefficients satisfy certain conditions [17, 18, 19]. Such conclusions
were obtained by analysing the properties of the theory in the linear regime and by im-
posing that the perturbations around a global-equilibrium state are stable and propagate
subluminally. Such stability analyses were more recently revisited in Ref. [4], including
only the effects of bulk viscosity, and in Ref. [5], which included the effects of both shear
and bulk viscosity. In both these papers, constraints for the shear and bulk relaxation
times were explicitly derived. Nowadays, the causality of relativistic fluid-dynamical the-
ories has been investigated even in the nonlinear regime [20, 21] (including the effects of
shear and bulk viscosity), where more general inequalities required to ensure causality
were derived. In the latter case, the inequalities constrain not only the transport coeffi-
cients, but also the values of the dissipative currents (in the linear regime, the inequalities
derived in Ref. [21] reduce to those derived in Refs. [4, 5]). Such constraints are relevant
for, e.g., fluid-dynamical applications to heavy-ion collisions, since the transport coeffi-
cients of QCD matter are not precisely known (often, they are completely unknown) and
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such fundamental constraints on transport coefficients (and the values of the dissipative
currents) can be extremely useful.

In this chapter we perform a linear stability analysis of relativistic Navier-Stokes
theory and of Israel-Stewart theory around a general global-equilibrium state. We
then demonstrate explicitly the results described above. First, we prove that the general
global-equilibrium state in relativistic Navier-Stokes theory is unstable, due to the ap-
pearance of so-called non-hydrodynamic modes that grow exponentially on microscopic
time scales. We then demonstrate that the Israel-Stewart theory remains stable, as long
as the transport coefficients of the linearized theory satisfy certain constraints.

This chapter is organized as follows. In Sec. 2.1, we first write the fluid-dynamical equa-
tions by approximating them to linear order in perturbations around a global-equilibrium
background. In Sec. 2.2 we transform these equations into Fourier space, with the pur-
pose of determining the dispersion relations satisfied by the perturbations. Section 2.3
discusses these dispersion relations for ideal fluid dynamics, where one just has stable
sound modes. In Sec. 2.4 we investigate the causality and stability of the linearized fluid-
dynamical equations in the Navier-Stokes limit. Although these equations appear to be
stable in a static background, they will become unstable when the perturbations are
performed on a moving background. Section 2.5 then discusses stability and causal-
ity of transient theories of relativistic fluid dynamics. Both in a static as well as in
a moving background these theories are causal and stable, provided that certain
asymptotic causality conditions are fulfilled. A summary of our results concludes
this chapter in Sec. 2.6.

2.1 Fluid-dynamical equations linearized around global
equilibrium

In this section, we linearize the fluid-dynamical equations described in the previous chapter
around a global-equilibrium state. In their linearized form, the equations simplify consid-
erably and some of their properties can be studied systematically. In particular, our goal
is to discuss the stability of relativistic fluids and to verify under which circumstances
acausal modes appear in the linearized theory. Here, we consider small fluid-dynamical
perturbations around a global-equilibrium state, with inverse temperature β0 ≡ 1/T0,
thermal potential α0 = β0µ0, where µ0 is the chemical potential, and a velocity uµ0 , satis-
fying the normalization condition, u0µu

µ
0 = 1. The pressure is obtained using an arbitrary

equation of state, P0 ≡ P (β0, α0). Naturally, in this state the dissipative currents appear-
ing in the net-charge 4-current, Nµ, and the energy-momentum tensor, T µν , all vanish:
Π0 = πµν0 = nµ0 = hµ0 = 0.

In Chapter 1, we derived the equations of motion of a relativistic fluid and discussed
two possible definitions of the fluid 4-velocity: one proposed by Landau [1] and another
by Eckart [2]. We note that the prescription chosen for the velocity field can affect some
aspects of the linear stability analyses [19]. Here, we perform our analysis using Landau’s
prescription for the velocity field, i.e., T µνuν = εuµ. In this case, the continuity equations
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2.1 Fluid-dynamical equations linearized around global equilibrium

related to energy, momentum, and net-charge conservation are given by

Dε+ (ε+ P + Π) θ − παβσαβ = 0 , (2.1)

(ε+ P + Π)Duµ −∇µ (P + Π)− πµβDuβ + ∆µ
α∇βπ

αβ = 0 , (2.2)

Dn+ nθ − nµDuµ +∇µn
µ = 0 . (2.3)

Here, ε is the energy density, n is the net-charge density, D ≡ uµ∂µ is the comoving
derivative, θ ≡ ∂µu

µ is the expansion scalar, σµν ≡ ∂〈µuν〉 is the shear tensor, ∆µ
ν =

gµν − uµuν is the projection operator onto the 3-space orthogonal to uµ, and ∇µ ≡ ∂〈µ〉,
A〈µ〉 ≡ ∆µ

νA
ν , A〈µν〉 ≡ ∆µν

αβA
αβ, with ∆µναβ = 1

2

(
∆µα∆νβ + ∆µβ∆να

)
− 1

3
∆µν∆αβ.

As discussed in Sec. 1.4.2, in transient theories of fluid dynamics the dissipative currents
are determined from dynamical evolution equations, and not by static constitutive
relations. These equations of motion were already derived in the previous chapter and
are given by

τΠDΠ + Π = −ζθ + · · · , (2.4)

τn∆µ
αDn

α + nµ = κ∇µα + · · · , (2.5)

τπ∆µν
αβDπ

αβ + πµν = 2ησµν + · · · . (2.6)

Above, the dots indicate possible second-order terms [16, 22, 23] which will be neglected
in the following linear stability analysis. Note that most (but not all) second-order terms
are nonlinear and do not contribute in the linearized regime (at least when considering
perturbations around an equilibrium state). For an analysis of the influence of some of
the second-order terms that do contribute in the linear stability analysis, see Ref. [24].

We consider perturbations of all fluid-dynamical fields around the global-equilibrium
state described above,

ε = ε0 + δε , (2.7)

n = n0 + δn , (2.8)

uµ = uµ0 + δuµ , (2.9)

Π = δΠ , (2.10)

nµ = δnµ , (2.11)

πµν = δπµν , (2.12)

where n0 ≡ n(β0, α0) and ε0 ≡ ε(β0, α0) are constants. The linearization procedure
consists of substituting Eqs. (2.7) – (2.12) into the exact fluid-dynamical equations (2.1)
– (2.6) and only retaining the terms that are linear, i.e., of first order, in the deviations
from the equilibrium state.

Since the fluid 4-velocity is normalized, i.e., uµu
µ = 1, it is straightforward to demon-

strate that the perturbations of the fluid velocity satisfy

δuµu
µ
0 = O2 ≈ 0 , (2.13)

where O2 denotes terms that are of second order or higher in perturbations of the fluid-
dynamical fields. That is, up to first order in perturbations, the fluctuations of the fluid
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2 Linear Stability and Causality

4-velocity are orthogonal to the background 4-velocity. Similarly, it is possible to obtain
orthogonality relations satisfied by the dissipative currents, δnµ and δπµν . As shown in
the previous chapter, the dissipative currents are constructed to be orthogonal to the
4-velocity field, uµn

µ = uµπ
µν = 0. Since nµ and πµν are at least of first order (in this

power-counting scheme), these relations lead to

u0
µδπ

µν = Oν2 ≈ 0 , (2.14)

u0
µδn

µ = O2 ≈ 0 . (2.15)

Thus, the perturbations of the dissipative currents are, to first order, also orthogonal to
the background velocity field. Due to these orthogonality relations, it is convenient to
introduce a projection operator onto the 3-space orthogonal to the background velocity,

∆µν
0 ≡ gµν − uµ0uν0 , (2.16)

and, similarly, a rank-4 symmetric, traceless projection operator

∆µναβ
0 ≡ 1

2

(
∆µα

0 ∆νβ
0 + ∆µβ

0 ∆να
0

)
− 1

3
∆µν

0 ∆αβ
0 . (2.17)

Finally, we define a comoving derivative relative to the background velocity field, D0 ≡
uµ0∂µ.

Using this notation, the equations of motion for the energy density, local velocity field,
and net-charge density, linearized around the global-equilibrium state, become

D0δε+ (ε0 + P0) ∂µδu
µ = O2 ≈ 0 , (2.18)

(ε0 + P0)D0δu
µ −∆µν

0 ∂ν (δP + δΠ) + ∂νδπ
µν = Oµ2 ≈ 0 , (2.19)

D0δn+ n0∂µδu
µ + ∂µδn

µ = O2 ≈ 0 , (2.20)

while the linearized equations for the dissipative currents are

τΠD0δΠ + δΠ + ζ∂µδu
µ = O2 ≈ 0 , (2.21)

τnD0δn
µ + δnµ − κ∆µν

0 ∂νδα = Oµ2 ≈ 0 , (2.22)

τπD0δπ
µν + δπµν − 2η∆µναβ

0 ∂αδuβ = Oµν2 ≈ 0 , (2.23)

where ζ, κ, η, τΠ, τn, and τπ are the transport coefficients as functions of the back-
ground temperature and thermal potential. We note that, in the linear regime, pressure
perturbations can be expressed as

δP =
∂P0

∂α0

∣∣∣∣
β0

δα +
∂P0

∂β0

∣∣∣∣
α0

δβ +O2 =
n0

β0

δα− h0n0

β0

δβ +O2 , (2.24)

where we have used Eq. (1.103). Similar relations apply to energy-density and net-charge
density fluctuations.

Exercise 2.1: Prove Eqs. (2.18) – (2.23).
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2.2 Linearized fluid-dynamical equations in Fourier space

2.2 Linearized fluid-dynamical equations in Fourier space

In order to investigate the (propagating and exponentially in- or decreasing) modes of the
fluid-dynamical equations, it is convenient to Fourier transform the space-time dependence
of the linearized equations. We define our Fourier transformation using the following
convention,

Ã(K) =

∫
d4x exp (−ixµkµ)A(X) , (2.25)

A(X) =

∫
d4k

(2π)4 exp (ixµk
µ) Ã(K) . (2.26)

Here, kµ ≡ K = (ω,k)T is the wavenumber 4-vector, with ω being the frequency and k
the wavenumber 3-vector of the fluctuation, and xµ ≡ X = (t,x)T is the usual space-time
coordinate 4-vector.

Let us define the covariant variables

Ω ≡ uµ0kµ , κµ ≡ ∆µν
0 kν , (2.27)

where Ω is the frequency of the perturbations in the local rest frame of the
background fluid while κµ is the corresponding wavenumber 4-vector. The linearized
conservation laws (2.18) – (2.20) can then be written in Fourier space in the simple form

Ωδε̃+ (ε0 + P0)κµδũ
µ = 0 , (2.28)

(ε0 + P0) Ωδũµ − κµ
(
δP̃ + δΠ̃

)
+ κνδπ̃

µν = 0 , (2.29)

Ωδñ+ n0κµδũ
µ + κµδñ

µ = 0 , (2.30)

and the linearized equations of motion (2.21) – (2.23) for the dissipative currents become

(1 + iτΠΩ) δΠ̃ = −iζκµδũµ , (2.31)

(1 + iτnΩ) δñµ = iκκµδα̃ , (2.32)

(1 + iτπΩ) δπ̃µν = iη

(
κµδũν + κνδũµ − 2

3
∆µν

0 κλδũ
λ

)
. (2.33)

We further define the scalar κ as the modulus of κµ, κµκ
µ ≡ −κ2. Note that the usual

dispersion relation of perturbations in a fluid, ω (k) (with ω ≡ k0), is not a Lorentz scalar
and will change depending on the magnitude of the background velocity uµ0 .

2.2.1 Tensor decomposition in Fourier space

It is also convenient to decompose the perturbations into components parallel and or-
thogonal to κµ. For this purpose we introduce another projection operator, now onto
the 3-space orthogonal to κ̂µ,

∆µν
κ = gµν + κ̂µκ̂ν , (2.34)
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2 Linear Stability and Causality

where κ̂µ ≡ κµ/κ is a space-like 4-vector normalized to κ̂µκ̂
µ = −1. Within this scheme,

an arbitrary 4-vector Aµ is decomposed as

Aµ = A‖κ̂
µ + Aµ⊥ , (2.35)

with components A‖ ≡ −κ̂µAµ and Aµ⊥ ≡ ∆µλ
κ Aλ. We shall refer to A‖ as the longitu-

dinal component of the corresponding 4-vector and Aµ⊥ as its transverse component.
Similarly, an arbitrary traceless, symmetric second-rank tensor, Aµν , is decomposed as

Aµν = A‖κ̂
µκ̂ν +

A‖
3

∆µν
κ + Aµ⊥κ̂

ν + Aν⊥κ̂
µ + Aµν⊥ . (2.36)

with A‖ ≡ κ̂µκ̂νAµν , A
λ
⊥ ≡ −κ̂ν∆µλ

κ Aµν , and Aµν⊥ ≡ ∆µναβ
κ Aαβ, where we defined the rank-

4 symmetric, traceless projection operator ∆µναβ
κ ≡ 1

2
(∆µα

κ ∆νβ
κ + ∆µβ

κ ∆να
κ )− 1

3
∆µν
κ ∆αβ

κ . In
this case, A‖ is the longitudinal component of the tensor, Aµ⊥ corresponds to its partially
transverse component, and Aµν⊥ is its fully transverse (traceless) component.

2.2.2 Longitudinal and transverse components

We now project Eqs. (2.28) – (2.33) onto their components longitudinal and transverse
to κ̂µ. This is useful because the longitudinal and transverse projections of the equations
decouple from each other, and can be solved independently to obtain the dispersion re-
lations satisfied by the perturbations. We first consider the equations for the longitudinal
components of the fluctuations.

First, we note that Eqs. (2.28), (2.30), and (2.31) are already written in terms of lon-
gitudinal perturbations since they describe perturbations of scalar quantities, i.e., energy
density, net-charge density, and bulk-viscous pressure. The longitudinal component of
Eqs. (2.29) and (2.32) are obtained by projecting each equation onto κ̂µ, while the longi-
tudinal component of Eq. (2.33) is obtained by projecting it onto κ̂µκ̂ν . The result is a
set of coupled equations for the perturbations δε̃, δP̃ , δñ, δα̃, δũ‖, δΠ̃, δñ‖, and δπ̃‖,

Ωδε̃− κ (ε0 + P0) δũ‖ = 0 , (2.37)

(ε0 + P0) Ωδũ‖ − κ
(
δP̃ + δΠ̃ + δπ̃‖

)
= 0 , (2.38)

Ωδñ− κ
(
n0δũ‖ + δñ‖

)
= 0 , (2.39)

(1 + iτΠΩ) δΠ̃− iζκδũ‖ = 0 , (2.40)

(1 + iτnΩ) δñ‖ − iκκδα̃ = 0 , (2.41)

(1 + iτπΩ) δπ̃‖ −
4

3
iηκδũ‖ = 0 . (2.42)

Exercise 2.2: Prove Eqs. (2.37) – (2.42).

The fluctuations of energy density, net-charge density, and pressure can be converted
into fluctuations of inverse temperature and thermal potential, δβ̃ and δα̃, respectively.
Solving these equations leads to six different modes of the theory, two of them related
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2.2 Linearized fluid-dynamical equations in Fourier space

to the propagation of sound waves, one related to the diffusion of net-charge
density fluctuations, and the remaining three being new non-propagating modes due
to fluctuations of the dissipative currents that are not allowed in Navier-Stokes
theory. The latter modes are non-hydrodynamic, i.e., they are modes that do not vanish
when the wavenumber is taken to zero, and describe the relaxation of the dissipative
currents back to global equilibrium. Such modes were thought to never exist in
fluid-dynamical theories, but we shall see that they are required in the relativistic
regime in order to restore causality – and that they even appear in Navier-Stokes
theory in the relativistic regime.

The equation of motion for the transverse component of the velocity field is obtained by
projecting Eq. (2.29) with ∆λ

κµ while the equation of motion for the partially transverse
component of the shear-stress tensor is obtained by projecting Eq. (2.33) with κ̂µ∆λ

κν .
The resulting equations are coupled,

(ε0 + P0) Ωδũλ⊥ − κδπ̃λ⊥ = 0 , (2.43)

(1 + iτπΩ) δπ̃λ⊥ − iηκδũλ⊥ = 0 . (2.44)

Exercise 2.3: Prove Eqs. (2.43) and (2.44).

Such transverse modes are usually referred to as shear modes, since they do not dis-
play any contributions from bulk-viscous pressure or diffusion 4-current. They describe
the diffusion of the velocity field and, as long as the relaxation times remain finite,
they also contain a non-hydrodynamic mode. Since δũµ⊥ and δπ̃µ⊥ carry a total of four
independent degrees of freedom, each mode obtained from the above equations will have
a twofold degeneracy.

Finally, we have the two equations of motion for the transverse fluctuation of the
diffusion 4-current and the fully transverse fluctuation of the shear-stress tensor, also
containing two modes each,

(1 + iτnΩ) δñλ⊥ = 0 , (2.45)

(1 + iτπΩ) δπ̃αβ⊥ =
2

9
iηκδũ‖

(
∆αβ
κ − 3uα0u

β
0

)
. (2.46)

The first equation is obtained by projecting Eq. (2.32) with ∆λ
κµ while the second equation

is obtained by projecting Eq. (2.33) with ∆αβ
κµν .

Exercise 2.4: Prove Eqs. (2.45) and (2.46).

Equation (2.45) gives rise to a twofold degenerate mode,

Ω =
i

τn
, (2.47)
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2 Linear Stability and Causality

which, in the rest frame of the global-equilibrium background, uµ0 = (1, 0, 0, 0)T , has
no wavenumber dependence, i.e., it is non-propagating. Such a mode is obviously non-
hydrodynamic, i.e., it has a frequency that does not vanish when the wavenumber is
taken to zero in the local rest frame. It is purely imaginary, with positive imaginary
part, and thus related to the exponential damping of the dissipative currents towards the
equilibrium state. Such modes are rather simple and will not be discussed further.

Equation (2.46) also gives rise to a twofold degenerate mode. With the help of Eq.
(2.42) we can write this equation as

δπ̃αβ⊥ =
1

6
δπ̃‖

(
∆αβ
κ − 3uα0u

β
0

)
, (2.48)

which shows that the fully transverse fluctuations of παβ simply follow the time depen-
dence of the longitudinal one. In the next sections, we discuss the solutions of the longi-
tudinal modes and the remaining transverse modes for ideal fluids, viscous fluids in the
Navier-Stokes limit, and for the complete transient fluid-dynamical equations.

2.3 Ideal fluid dynamics

The ideal-fluid limit is obtained by setting the viscosity and relaxation-time coefficients
to zero. In this case, one obtains the following set of equations for the longitudinal
perturbations

Ωδε̃− (ε0 + P0)κδũ‖ = 0 , (2.49)

(ε0 + P0) Ωδũ‖ − κδP̃ = 0 , (2.50)

Ωδñ− n0κδũ‖ = 0 , (2.51)

and one equation for the transverse velocity perturbation

(ε0 + P0) Ωδũµ⊥ = 0 . (2.52)

The set of equations for the longitudinal perturbations can be cast into the following
matrix form, 

Ω ∂ε0
∂β0

∣∣∣
α0

Ω ∂ε0
∂α0

∣∣∣
β0
− (ε0 + P0)κ

κh0n0

β0
−κn0

β0
(ε0 + P0) Ω

Ω ∂n0

∂β0

∣∣∣
α0

Ω ∂n0

∂α0

∣∣∣
β0

−n0κ


 δβ̃

δα̃
δũ‖

 = 0 , (2.53)

where the energy-density, net-charge density, and pressure perturbations were decomposed
in terms of inverse temperature and thermal-potential perturbations. Note that, for the
pressure perturbation, we have used Eq. (2.24).

The solution for the transverse mode is simply Ω = 0. The remaining modes from
the longitudinal fluctuations are obtained by finding the roots of the determinant of the
matrix in Eq. (2.53), leading to the following equation

Ω
(
Ω2 − c2

sκ
2
)

= 0 , (2.54)
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where we identify the square of the sound velocity as

c2
s =

∂P0

∂ε0

∣∣∣∣
s0/n0

=
n0

β0

h−1
0

∂ε0
∂β0

∣∣∣
α0

− ∂n0

∂β0

∣∣∣
α0

+ ∂ε0
∂α0

∣∣∣
β0
− h0

∂n0

∂α0

∣∣∣
β0

∂ε0
∂β0

∣∣∣
α0

∂n0

∂α0

∣∣∣
β0
− ∂ε0

∂α0

∣∣∣
β0

∂n0

∂β0

∣∣∣
α0

. (2.55)

Exercise 2.5:

(i) Prove Eq. (2.54) by explicitly computing the determinant of the coefficient matrix
in Eq. (2.53).

(ii) Prove Eq. (2.55) by applying the chain rule for Jacobi determinants, i.e.,

∂(x, y)

∂(u, v)
=
∂(x, y)

∂(a, b)

∂(a, b)

∂(u, v)
. (2.56)

In the rest frame of the global-equilibrium state, i.e., uµ0 = (1, 0, 0, 0)T , the scalars Ω
and κ reduce to the usual frequency and wavenumber of the perturbations, respectively,
Ω = ω and κ = k. In this case, one recovers the well-known expressions for the modes of
an ideal fluid,

ω(k) = 0 , ω(k) = ±csk , (2.57)

i.e., a static mode and two sound modes, travelling with velocity cs forward and
backward with respect to the fluid at rest. The static mode appears because we included
net-charge fluctuations in the analysis. If one considers a system with zero net charge, the
static mode disappears, with the sound modes remaining in the same form as obtained
above.

For a nonzero background velocity (without loss of generality, we can always set the
velocity to point into the x–direction), uµ0 = (γ, γV, 0, 0)T , we have Ω = γω − γV kx and
κ2 = Ω2−kµkµ = γ2 (ωV − kx)2+k2

T . Naturally, a nonzero background velocity introduces
an anisotropy in the system, with the modes no longer depending on the modulus of
the wavenumber, but displaying a separate dependence on kx and kT ≡

√
k2
y + k2

z . For
the sake of simplicity, we consider waves traveling only in the x–direction, i.e., with
kT = 0, in which case the frequency will depend solely on k ≡ kx. Then the dispersion
relation is obtained by solving the equation

(ω − V k)
[(

1− c2
sV

2
)
ω2 − 2

(
1− c2

s

)
V kω +

(
V 2 − c2

s

)
k2
]

= 0 . (2.58)

This equation has three solutions,

ω(k) = V k , (2.59)

ω±(k) =
V ± cs
1± V cs

k . (2.60)
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2 Linear Stability and Causality

We see that the frequencies of oscillations are both linear in k. As expected, the mode
that previously vanished now starts to move with the background velocity. Meanwhile,
each sound mode has now a different propagation speed, expressed by the relativistic
velocity-addition rule

v±s =
V ± cs
1± V cs

.

One mode is moving in the direction of the unperturbed fluid and the other in the oppo-
site direction. Naturally, the waves propagating against the flow of the background will
propagate slower than those moving in the same direction as the background fluid.

Exercise 2.6: Check that Eq. (2.60) is indeed a solution of Eq. (2.58).

2.4 Relativistic Navier-Stokes theory

05/11/2022

The modes related to relativistic Navier-Stokes theory are obtained from the expressions
derived in the previous section by taking the limit of vanishing relaxation times, τπ = τn =
τΠ = 0. In this limit, Eqs. (2.40), (2.41), (2.42), and (2.44) dictate that the fluctuations
of the dissipative currents are expressed in terms of fluctuations of velocity and thermal
potential in the following way,

δΠ̃ = iζκδũ‖ , (2.61)

δñ‖ = iκκδα̃ , (2.62)

δπ̃‖ =
4

3
iηκδũ‖ , (2.63)

δπ̃λ⊥ = iηκδũλ⊥ . (2.64)

The equations of motion (2.37) – (2.39) for the longitudinal perturbations then reduce
to

Ωδε̃− κ (ε0 + P0) δũ‖ = 0 , (2.65)

(ε0 + P0) Ωδũ‖ − κδP̃ − iκ2

(
ζ +

4

3
η

)
δũ‖ = 0 , (2.66)

Ωδñ− κn0δũ‖ − iκ2κδα̃ = 0 , (2.67)

while the transverse modes (2.43) satisfy the simple relation(
Ω− iκ2 η

ε0 + P0

)
δũµ⊥ = 0 . (2.68)

There are no transverse perturbations of the diffusion current, while on account of Eq. (2.48)
the fully transverse perturbations of the shear-stress tensor follow that of the longitudinal
one, Eq. (2.63).
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2.4 Relativistic Navier-Stokes theory

2.4.1 Transverse modes

Let us first discuss the transverse (i.e., shear) modes since their dispersion relations are
more simple and easier to obtain. From Eq. (2.68), we can immediately infer that Ω and
κ obey a diffusion-type dispersion relation

Ω = iτηκ
2 . (2.69)

where we defined
τη ≡

η

ε0 + P0

. (2.70)

We note that τη is a time scale that naturally appears in the shear modes of Navier-
Stokes theory and encompasses all effects of dissipation on the transverse perturbations.
We shall soon demonstrate that this time scale is also related to the exponential growth
of unstable non-hydrodynamic modes that will appear when perturbing the theory in a
moving background. These unstable modes appear only due to the parabolic nature of the
relativistic Navier-Stokes theory, which ends up generating new modes in boosted frames.

When uµ0 = (1, 0, 0, 0)T , one simply obtains a non-propagating, exponentially damped
mode with twofold degeneracy,

ω(k) = iτηk
2 . (2.71)

This relation is the same as the one obtained by solving the diffusion equation, with τη
playing the role of the diffusion coefficient. That is, the shear modes simply describes a
diffusion process of the velocity field.

Now we consider propagation of shear perturbations in a moving background. As done
for the case of an ideal fluid, we choose our coordinate system in such a way that the
velocity of the background is in the x–direction, i.e., uµ0 = (γ, γV, 0, 0)T . We also only
consider the case of perturbations that travel in the x–direction, i.e., kµ = (ω, k, 0, 0)T .
The dispersion relation (2.69) then becomes

γ(ω − V k) = iτηγ
2(ωV − k)2

⇐⇒ 0 = ω2V 2 +

(
i

γτη
− 2V k

)
ω − i

γτη
V k + k2 . (2.72)

A nonzero background velocity has the effect of mixing the contributions of
frequency, ω, and wavenumber, k, which are contained in the Lorentz scalars Ω and
κ. Therefore, for a moving background the quadratic term in κ in the dispersion relation
will not only carry contributions that are quadratic in k, as in the V = 0 case, but will
also carry contributions that are quadratic in ω. This leads to the appearance of the
quadratic term ω2V 2 in the dispersion relation, producing an additional transverse
mode in the theory. The two solutions are

ω(k) =
1 + 2iγV τηk ±

√
1 + 4iV τηk/γ

2iγV 2τη
. (2.73)

The analytic solution in the limit of small wavenumbers, k → 0, is

ω (k → 0) =

 −
i

γV 2τη
,

V k + iτηk
2/γ3 .

(2.74)
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2 Linear Stability and Causality

The second mode corresponds to the one of Eq. (2.71), since it tends to ik2τη when the
background velocity goes to zero. On the other hand, the first mode is intrinsically new
and is non-hydrodynamic, non-propagating, and, because of a negative imaginary part,
unstable. This mode describes perturbations that grow exponentially on time scales of
the order of γV 2τη. This additional mode does not appear when the velocity of the unper-
turbed fluid is zero and, for this reason, this problematic feature of Navier-Stokes theory
remains largely unperceived in the literature. Nevertheless, the emergence of unstable
non-hydrodynamic modes in relativistic Navier-Stokes theory is a fundamental issue that
must be fixed, in order to obtain a relativistic theory of fluid dynamics. We remark that
this is a problem of the relativistic version of Navier-Stokes theory – the nonrelativistic
version of the theory is stable, even when perturbed around a moving global-equilibrium
state.

Exercise 2.7: Prove Eqs. (2.73) and (2.74).

2.4.2 Longitudinal modes

Next, we consider the longitudinal modes. For the sake of simplicity, we restrict our
analysis to the limit of vanishing net-charge fluctuations. (This case is treated in Ref. [24]
for a vanishing net background charge). In this case, Eqs. (2.65) and (2.66) simplify to(

Ω −κ
−c2

sκ Ω− iτeffκ
2

) δε̃

ε0 + P0

δũ‖

 = 0 , (2.75)

where we used the definition of sound velocity at zero chemical potential, c2
s = dP0/dε0,

and defined the effective time scale

τeff ≡
ζ + 4

3
η

ε0 + P0

, (2.76)

which plays a very similar role as the variable τη that appeared in the previous subsection
when discussing the shear modes. As before, the dispersion relations satisfied by the
perturbations are found by setting the determinant of the matrix in Eq. (2.75) to zero.
The equation satisfied by Ω and κ then is

Ω2 − iτeffΩκ2 − c2
sκ

2 = 0 . (2.77)

In the case where the velocity of the unperturbed system is zero, i.e., uµ0 = (1, 0, 0, 0)T ,
one simply has Ω = ω and κ = k and Eq. (2.77) simplifies to

ω2 − iτeffωk
2 − c2

sk
2 = 0 =⇒ ω (k) = i

τeff

2
k2 ± k

√
c2
s −

τ 2
effk

2

4
. (2.78)

These are the sound modes of the theory and they reduce to the solution found for ideal
fluids when τeff = 0. Defining the critical wavenumber

kNS
c = 2cs/τeff , (2.79)
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2.4 Relativistic Navier-Stokes theory

Figure 2.1: The real parts (left panel) and the imaginary parts (right panel) of the disper-
sion relations for the longitudinal modes of Navier-Stokes theory for a static
background. We set τeff = 2β0.

we see that for k < kNS
c the sound modes have a part propagating with the reduced speed of

sound cs,eff ≡
√
c2
s − τ 2

effk
2/4 ≤ cs. They also have a non-propagating part which describes

how such modes are damped by viscosity. On the other hand, for wavenumbers larger
than k ≥ kNS

c , the frequencies become purely imaginary and there are no propagating
modes. In Fig. 2.1 we show the real (left panel) and imaginary (right panel) parts of ω(k)
in units of temperature, for τeff = 2β0.

The solution at small wavenumbers, k → 0, can be written in the simple form

ω(k) = ±csk + i
τeff

2
k2 +O(k3) , (2.80)

from which we conclude that, to leading order, the sound modes propagate with the usual
speed of sound cs, damped by the effective specific viscosity τeff/2. On the other hand, at
large wavenumbers, k →∞,

ω(k) = i
τeff

2
k2 (1± 1) +O(1) . (2.81)

That is, for large values of wavenumbers, the mode is either zero or appears to be purely
diffusive, ω(k) ∼ iτeffk

2.
For the same moving background as considered for the shear modes, uµ0 = γ (1, V, 0, 0)T

and kµ = (ω, k, 0, 0)T , the dispersion relation (2.77) assumes the form

(ω − kV )2 − iτeffγ (ω − kV ) (ωV − k)2 − c2
s (ωV − k)2 = 0 . (2.82)

In this case, we observe that the term Ωκ2 in Eq. (2.77) will make the equation cubic
in ω and, as happened with the shear modes, a new solution will emerge. It is easy to
see that such a new solution will be an unstable non-hydrodynamic mode. For this
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2 Linear Stability and Causality

purpose, one can just look for the solutions of the equation at k = 0,

ω (k = 0) =

 −i
1− c2

sV
2

τeffγV 2
,

±0 .
(2.83)

The last two solutions are simply zero and can be identified with the usual sound modes
that already appeared when the unperturbed global-equilibrium state was at rest. The
additional solution does not vanish at k = 0, i.e., it is a non-hydrodynamic mode, and has
a negative imaginary part, i.e., it is an unstable exponentially growing mode. Once more,
we see that relativistic Navier-Stokes theory is unstable when perturbed around
global equilibrium: a fundamental problem that simply cannot be ignored. In the next
subsection, we briefly discuss the origins behind this issue.

2.4.3 Causality and stability of Navier-Stokes theory

In the preceding subsections it was shown that relativistic Navier-Stokes theory is un-
stable, since perturbations on a moving fluid in global equilibrium grow exponentially,
within microscopic time scales of the order of τη ∼ τeff ∼ η/(ε0 + P0). This analysis was
performed fixing the direction of the background velocity to be in the x-direction and
only considering perturbations traveling in the same direction, i.e.,

uµ0 = γ (1, V, 0, 0)T , (2.84)

kµ = (ω, k, 0, 0)T .

In this scenario, the covariant frequency, Ω, and wavenumber, κ, of the oscillations satisfy

Ω = γ (ω − V k) , (2.85)

κ2 = γ2 (ωV − k)2 , (2.86)

which is equivalent to a 1+1-dimensional Lorentz boost with velocity V of a 4-vector
made of ω and k. Therefore, for all practical purposes, the dispersion relation for modes
obtained for perturbations of a moving fluid can be obtained by applying a Lorentz
transformation to the same dispersion relation obtained for perturbations on a fluid at
rest. This can help us understand the connection between the acausal nature of the
theory and its perturbative instability when considering moving background fluids. We
shall make this argument also noting a connection between the modes of Navier-Stokes
theory, at asymptotically large values of wavenumber, and the dispersion relation of the
diffusion equation.

We already demonstrated in the previous subsections that, for perturbations of a static
fluid, both the transverse and longitudinal modes of Navier-Stokes theory behave in the
same way when k → ∞, ω (k) ∼ iτeffk

2/2 ∼ iτηk
2, being purely non-propagating modes

that are quadratic in k. This behavior is identical to the one found in the diffusion
equation (1.113), in which case there is a single non-propagating mode with dispersion
relation ω(k) = iDk2, with D being the diffusion coefficient. It is well known that the
diffusion equation is acausal and, consequently, we conjecture that a k2-dependence of
any non-propagating mode can also be considered a sign of acausality.
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2.5 Transient theory of fluid dynamics

Now we show that the parabolic nature of diffusion-like dispersion relations (given by
their quadratic dependence on k) will lead to additional modes once a Lorentz transforma-
tion is performed. Let us consider the Lorentz boost of a 4-vector with time-component
ω and spatial component k in boost direction,(

ω
k

)
=

(
γ −γV
−γV γ

)(
ω′

k′

)
=

(
γω′ − γV k′
−γV ω′ + γk′

)
. (2.87)

Then, we substitute the boosted variables into the diffusion dispersion relation, which
changes in the following way

ω = iDk2 −→ ω′ − V k′ = iγD (k′ − V ω′)2
. (2.88)

It is straightforward to see that, in the limit of vanishing k′, there is always a non-
hydrodynamic mode given by

ω′(k′ = 0) = − i

γDV 2
, (2.89)

which has a negative imaginary part, i.e., it is exponentially growing and thus
unstable. Note that all unstable modes obtained so far in Navier-Stokes theory have the
structure above, i.e., at k = 0 they always look like boosted modes of the diffusion equa-
tion. In this sense, it is not too surprising that a theory with parabolic, diffusion-type
modes in a non-moving background will end up featuring unstable modes in a mov-
ing background. Naturally, non-relativistic theories will never display this property
since the modes transform following Galileo’s transformation, which never mixes
frequency and wavenumber.

It is important to note how the structure of Lorentz boosts ends up connecting the
infinite-wavenumber behavior of a mode in a static background (usually considered
to be irrelevant for macroscopic dynamics) with the vanishing-wavenumber behavior
of the same mode in a moving background. This is partially why the acausality of
a mode, which is an asymptotic feature, can affect its stability, which is a feature
influencing the small-wavenumber behavior of the fluctuation. This is certainly an
interesting aspect of relativistic theories.

Finally, we shall see in the next section that a transient theory of fluid dynamics does
not display any non-propagating modes that match those of the diffusion equation. Also,
we shall see that intrinsically unstable modes do not exist – the modes can be rendered
stable as long as the transport coefficients satisfy a set of conditions that will be derived
below.

2.5 Transient theory of fluid dynamics

We now analyze the modes of the complete theory, which includes the effect of the relax-
ation times. For the sake of simplicity, we shall perform this analysis neglecting contri-
butions from net-charge fluctuations and in the conformal limit (vanishing bulk-viscous
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2 Linear Stability and Causality

pressure, δΠ̃ = 0, and vanishing bulk viscosity, ζ = 0). In this case, Eqs. (2.37), (2.38),
and (2.42) for the longitudinal fluctuations simplify to

Ωδε̃− κ (ε0 + P0) δũ‖ = 0 , (2.90)

(ε0 + P0) Ωδũ‖ − κ
(
c2
sδε̃+ δπ̃‖

)
= 0 , (2.91)

(1 + iτπΩ) δπ̃‖ −
4

3
iηκδũ‖ = 0 . (2.92)

The remaining equations for the shear modes do not change under these assumptions and
are still given by Eqs. (2.43), (2.44), and (2.46). As already discussed above, the solution
of Eq. (2.46) is already determined by Eq. (2.92) and does not need to be addressed
further.

2.5.1 Transverse modes in the rest frame

The equations of motion (2.43), (2.44) for the transverse (i.e., shear) modes can be cast
into the following matrix form(

Ω −κ
−iτηκ 1 + iτπΩ

) δũµ⊥
δπ̃µ⊥

ε0 + P0

 = 0 , (2.93)

leading to the following the dispersion relation,

Ω (1 + iτπΩ)− iτηκ2 = 0 . (2.94)

Naturally, this equation will have two solutions in both the moving background and the
one at rest, since its highest power in Ω is the same as its highest power in κ, i.e., κ2.

When the background fluid is at rest, i.e., when we set uµ0 = (1, 0, 0, 0)T , the dispersion
relation becomes

ω (1 + iτπω)− iτηk2 = 0 , (2.95)

with two distinct solutions

ω(k) =
i

2τπ
± k
√
τη
τπ

√
1−

(
κshear
c

k

)2

, (2.96)

where similarly to Navier-Stokes theory we defined a critical wavenumber

κshear
c ≡ 1√

4τητπ
. (2.97)

We see that, due to the nonzero relaxation time τπ, the transverse shear modes become

propagating for k > κshear
c , with propagation speed

√
τη/τπ

√
1− (κshear

c /k)2. They also

have a nonvanishing imaginary part, describing damping on a time scale ∼ 2τπ.
At small wavenumbers, k → 0, the shear modes become

ω (k → 0) =

 iτηk
2 +O(k4) ,

i

τπ
+O(k2) .

(2.98)
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2.5 Transient theory of fluid dynamics

We see that, for transient theories of fluid dynamics, we already have a non-hydrodyna-
mic mode, even for perturbations on a background that is at rest. But such a mode is
stable and decays exponentially to zero within a time scale τπ – the new transport
coefficient introduced when constructing transient theories of fluid dynamics. The other
mode is hydrodynamical and, at small wavenumbers, is identical to the one obtained from
relativistic Navier-Stokes theory. Therefore, at small wavenumbers, the transient theory
is very similar to Navier-Stokes theory, the only difference being the appearance of a
damped – and therefore stable – non-hydrodynamic mode ∼ i/τπ.

At large values of the wavenumber, k →∞, the solution becomes

ω (k →∞) = ±
√
τη
τπ
k +O(1) . (2.99)

We see that this mode is linear in the wavenumber and, contrary to Navier-Stokes theory,
the order of the dispersion relation in powers of frequency will not be modified by a
Lorentz boost. As discussed, this asymptotic behavior of the mode may provide a
causal and stable mode.
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Figure 2.2: The real parts (left panel) and the imaginary parts (right panel) of the disper-
sion relations for the transverse modes in a static background. We fixed the
relaxation time as τπ = 6τη and η/s0 = 1/(4π). Figure taken from Ref. [5].

In Fig. 2.2 we show the real (left panel) and imaginary (right panel) parts of the
transverse modes in units of temperature. In this plot, we parametrize the relaxation
time as τπ = 6τη [7] and fix the shear viscosity to be η/s0 = 1/(4π), a value usually
associated to strongly coupled conformal fluids [25].

The dispersion relations for the shear modes resulting from Eq. (2.96) change their
behavior from non-propagating to propagating at the critical wavenumber (2.97), as shown
in Fig. 2.2. In this sense, it may be instructive to address the issue of causality by looking
at the group velocity of such propagating modes. For wavenumbers larger than κshear

c ,
the (modulus of the) group velocity of the propagating shear mode is

vg(k) =
∂ Reω(k)

∂k
= vas

g,shear

k/κshear
c√

(k/κshear
c )2 − 1

, (2.100)
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Figure 2.3: The group velocity for the transverse mode for τπ = 6τη, c
2
s = 1/3, and

η/s0 = 1/ (4π) (full line), 1/4 (dashed line), and 1 (dotted line). Figure taken
from Ref. [5].

where we defined the asymptotic group velocity of this mode,

vas
g,shear ≡

√
τη
τπ

, (2.101)

as the asymptotic value of vg in the large-wavenumber limit. The group velocity as a
function of the wavenumber is shown in Fig. 2.3.

We can see from Eq. (2.100) (and also from Fig. 2.3) that the group velocity diverges
near the critical wavenumber κc and approaches its asymptotic value (k → ∞) from
above. For certain choices of shear relaxation time and viscosity, it may thus happen that
the group velocity becomes superluminal. In Sec. 2.5.4 we shall show that this apparent
violation of causality of the group velocity does not cause the theory as a whole to
become acausal. The necessary condition required in order to insure that the theory is
causal is actually that the asymptotic group velocity (2.101) does not exceed the
speed of light,

lim
k→∞

∂Re ω(k)

∂k
= vas

g,shear ≤ 1 . (2.102)

This condition, which we shall refer to as asymptotic causality condition, is not auto-
matically satisfied by the linearized Israel-Stewart theory. It actually must be imposed
additionally, leading to the following constraint that must be satisfied by the shear relax-
ation time (if the effects of bulk-viscous pressure and net-charge diffusion were included,
also additional constraints for the relaxation times related to these quantities would have
been obtained [4, 19]),

τη
τπ
≤ 1 ⇐⇒ τπ ≥

η

ε0 + P0

. (2.103)

That is, the relaxation time must be larger than the time scale τη.
When analyzing the longitudinal (sound) modes, we shall find that the causality condi-

tion (2.103) is actually not sufficient to guarantee the stability and causality of the sound
modes. Since all modes must be causal and stable, the validity of Eq. (2.103) does not
guarantee the causality of the linearized theory as a whole.

44



2.5 Transient theory of fluid dynamics

2.5.2 Longitudinal modes in the rest frame

The equations of motion (2.90) – (2.92) for the longitudinal modes can be cast into the
following matrix form

Ω −κ 0

−c2
sκ Ω −κ

0 −iτeffκ 1 + iτπΩ




δε̃

ε0 + P0

δũ‖
δπ̃‖

ε0 + P0

 = 0 , (2.104)

with the dispersion relations being given by(
Ω2 − c2

sκ
2
)

(1 + iτπΩ)− iτeffΩκ2 = 0 . (2.105)

Naturally, this equation will have three solutions in both the moving background and the
static one, since its highest power in frequency, Ω3, is the same as its highest power in
both κ and Ω, which is Ωκ2.

Exercise 2.8: Prove Eq. (2.105) by computing the determinant of the coefficient matrix
in Eq. (2.104).

When the unperturbed fluid is at rest, the dispersion relation becomes(
ω2 − c2

sk
2
)

(1 + iτπω)− iτeffωk
2 = 0 . (2.106)

The longitudinal modes are the solutions of a cubic equation, which cannot be expressed
in a simple analytical form. In the following, we initially restrict our discussion to the
limiting form of these modes for k → 0 and k → ∞, respectively. The analytic solution
in the limit of small wavenumber k is

ω(k) =


i

τπ
,

±cs k + i
τeff

2
k2 .

(2.107)

The first solution is obtained by setting k ≡ 0 in Eq. (2.106), while the second is obtained
by assuming that ω ∼ k � τ−1

π , thus mapping Eq. (2.106) onto Eq. (2.78).
On the other hand, for large wavenumber one obtains from Eq. (2.106)

ω(k) =


i

τπ

[
1 +

τeff

τπc2
s

]−1

,

±cs k
√

1 +
τeff

τπc2
s

+
i

2τπ

[
1 +

τπc
2
s

τeff

]−1

.

(2.108)

This corresponds to one non-propagating mode and two propagating (sound) modes. As
observed for the transverse modes, at small wavenumber the longitudinal propagating
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Figure 2.4: The real parts (left panel) and the imaginary parts (right panel) of the disper-
sion relations for the sound modes (full lines) and the non-propagating mode
(dashed line). The parameters are η/s0 = 1/(4π) , τπ = 6τη , c

2
s = 1/3. Figure

taken from Ref. [5].

modes are exactly the same as the ones obtained from Navier-Stokes theory. Also, we
note that all imaginary parts are positive and therefore all longitudinal modes are stable
(as it was the case for the transverse modes).

Exercise 2.9: Prove Eq. (2.108).

(Hint: For the first solution, assume ω2 � c2
sk

2 in the first term of Eq. (2.106). The
second solution can be obtained via perturbation theory. To this end, first consider Eq.
(2.106) to leading order in ω and k. Show that the solution of the leading-order equation
gives the first term in Eq. (2.108). Then consider corrections to this solution. Linearize
Eq. (2.106) in these corrections and determine them in the limit of large wavenumber.
This gives the second term in Eq. (2.108).)

The non-propagating mode does not have a real part, Reω = 0, and, hence, we can-
not discuss the causality of this mode using the group velocity. This is similar to what
happened in Navier-Stokes theory, where all modes became purely imaginary above a
critical wavenumber. For this reason, we analyze this mode by comparing it to the mode
of the diffusion equation (1.113) – the same procedure adopted with Navier-Stokes the-
ory. As already stated, the diffusion equation is known to be acausal and has a single
non-propagating mode with dispersion relation ω = iDk2. We have already demonstrated
that such a k2–dependence in any non-propagating mode (even if in the limit of infinite
wavenumber) will lead to unstable non-hydrodynamic modes once boosted to a moving
frame. However, the non-propagating mode (2.108) is independent of k in the asymp-
totic limit (cf. Fig. 2.4) and should not lead to acausal signal propagation. Furthermore,
this lack of dependence on the wavenumber leads to a dispersion relation that is well
behaved under Lorentz transformations, i.e., no additional mode will appear when kµ is
boosted.

The dispersion relations resulting from Eq. (2.106) are shown in Fig. 2.4, and the
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Figure 2.5: The group velocity of longitudinal modes for η/s0 = 1/(4π) , c2
s = 1/3, and

τπ = 6τη (full line), τπ = 2τη (dashed line), as well as τπ = 3τη/2 (dotted line).
Figure taken from Ref. [5].

corresponding group velocity in Fig. 2.5. The group velocity has a maximum for a finite
value of k/T and approaches its asymptotic value (k →∞) from above. But it does not
diverge for any finite value of k, as happened with the group velocity for the shear modes.
We see that for small values of the ratio τπ/τη the group velocity can become superluminal
in some wavenumber domains. Nevertheless, as will be discussed in Sec. 2.5.4, this is not
necessarily a problem since only the asymptotic value of the group velocity determines
whether the mode as a whole violates causality or not. However, if τπ/τeff is sufficiently
small, even the asymptotic group velocity can become larger than the velocity of light. As
a matter of fact, the asymptotic value of the group velocity for the longitudinal
modes is

vas
g,sound = lim

k→∞

∂Reω

∂k
= cs

√
1 +

τeff

τπc2
s

. (2.109)

Consequently, for the asymptotic group velocity of sound waves to be less than the speed
of light, τπ and τeff should satisfy the following asymptotic causality condition [14]:

τeff

τπ
≤ 1− c2

s . (2.110)

This is similar to the causality condition for the group velocity in the case of bulk viscosity,
found originally in Ref. [4]. For conformal fluids, where c2

s = 1/3, the condition (2.110)
simplifies to

τeff

τπ
≤ 2

3
. (2.111)

Since for conformal fluids ζ = 0, we also have τeff = 4τη/3, and thus

τη
τπ
≤ 1

2
, (2.112)

which is more restrictive than the asymptotic causality condition (2.103) for the shear
modes.
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2.5.3 Stability for a moving background

So far, we have studied the dispersion relations of transient fluid dynamics for pertur-
bations on a fluid at rest. In this scheme, it was demonstrated that such theories are
stable, and also causal, if the relaxation times satisfy a certain asymptotic causality
condition. Now we must check if this situation changes when we consider perturbations
in a moving (or Lorentz-boosted) background – in Navier-Stokes theory, this completely
changed the behavior with the appearance of unstable non-hydrodynamic modes.

We consider the same moving background used when analyzing the longitudinal and
transverse modes of Navier-Stokes theory, which we parametrized as uµ0 = γ (1, V, 0, 0)T

and kµ = (ω, k, 0, 0)T . This corresponds to fluctuations traveling parallel to the back-
ground velocity. The dispersion relation for the transverse modes, Eq. (2.94), transforms
to

(ω − V k) [1 + iγτπ (ω − V k)]− iτηγ (ωV − k)2 = 0 . (2.113)

where we used Eqs. (2.85) and (2.86). This is a quadratic equation and, consequently, it
has two solutions, each with a twofold degeneracy. These are

ω±(k) =
1

2(τπ − V 2τη)γ

[
i− 2γ(τη − τπ)kV ±

√
−1− 4iγ−1τηV k + 4γ−2τητπk2

]
.

(2.114)

Exercise 2.10: Prove that Eq. (2.114) is the solution of Eq. (2.113).

At k = 0, it is straightforward to see that the two solutions simplify to

ω (k = 0) =

 0 ,
i

γ(τπ − V 2τη)
,

(2.115)

which agree with the solution (2.98) in a non-moving background (V = 0) and with the
results obtained from Navier-Stokes theory in a moving background, Eq. (2.74), when τπ
is set to zero. The main and fundamental difference is that the non-propagating mode
that appears in Navier-Stokes theory, when perturbed around a moving fluid, always has a
negative imaginary part. As can be seen from the expression above, it is the introduction
of a shear relaxation time that makes it possible to change the sign of the imaginary part of
such a non-propagating mode. As a matter of fact, we observe that, as long as τπ ≥ τη, this
mode is always stable: a condition that coincides with the asymptotic causality condition
(2.103). So we see once more, in a more practical setting, the connection between causality
and stability.

Similarly, the dispersion relation for the longitudinal modes, Eq. (2.105), transforms to[
(ω − V k)2 − c2

s (ωV − k)2] [1 + iγτπ (ω − V k)]− iγτeff (ω − V k) (ωV − k)2 = 0 .
(2.116)
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2.5 Transient theory of fluid dynamics

This equation is cubic and has three solutions, which are too long to write down in this
context. Once more, we restrict ourselves to study the solution at k = 0, where the
instability of the non-propagating modes was already obvious in Navier-Stokes theory
(for a moving background). In this case,

ω (k = 0) =

 ± 0 ,
i (1− c2

sV
2)

γ [τπ (1− c2
sV

2)− τeffV 2]
.

(2.117)

Exercise 2.11: Prove that Eq. (2.117) is a solution for Eq. (2.116) for k = 0.

This is very similar to what we found for the shear modes. We have one non-vanishing
solution, corresponding to the mode that was unstable in Navier-Stokes theory, see Eq.
(2.83), which agrees with the above when setting τπ =. We see once more that a non-
vanishing shear relaxation time τπ can render this mode stable. For any value
of 0 ≤ V < 1, if τeff ≤ τπ(1 − c2

s), the imaginary part of this mode will always be
positive and, thus, it will be linearly stable. This condition corresponds to the asymptotic
causality condition (2.110) derived for the longitudinal modes for a background fluid at
rest, confirming that, once causality is assured, the boosted fluctuations will be stable.

In Fig. 2.6, the dependence of the group velocity on the wavenumber is shown for
various values of the boost velocity V . The left panel shows the behavior of one of the
shear modes and the right panel one of the sound modes. The parameter set used here
is η/s0 = 1/ (4π) , τπ = 6τη, c

2
s = 1/3, which satisfies the asymptotic causality condition.

We observe that the divergence of the group velocity of the shear mode in the rest frame is
tampered by the movement of the unperturbed fluid, resulting in a peak of finite height.
However, the group velocity may still exceed the speed of light in a certain range of
wavenumbers. Nevertheless, we note that as we increase the velocity of the unperturbed
fluid, the peak height gradually diminishes, until the group velocity remains below the
speed of light for all wavenumbers. However, the same does not occur with the longitudinal
group velocity, which we found to be superluminal in some ranges of wavenumber even
when the velocity of the unperturbed fluid becomes close to the speed of light.

Although the group velocity of the shear or the sound mode may exceed the speed of
light, the theory is still stable as long as the asymptotic causality condition is fulfilled.
This is demonstrated in the left panel of Fig. 2.7, where the imaginary parts of the modes
are shown for the parameter set η/s0 = 1/ (4π) , τπ = 6τη, c

2
s = 1/3. We observe that all

imaginary parts are positive, indicating the stability of the theory.
In contrast to the case where the background fluid is at rest, where the theory was

found to be stable even for parameters which violate the asymptotic causality condition
(2.110), this is no longer the case for perturbations performed on a moving fluid. In the
right panel of Fig. 2.7, the imaginary parts of the modes are calculated with the parameter
set η/s0 = 1/ (4π), c2

s = 1/3 and τπ = τη – the latter violating the causality and stability
conditions derived in this section. Now one observes the appearance of negative imaginary
parts, indicating that the theory becomes unstable.
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Figure 2.6: The group velocity calculated for one of the shear modes (left panel) and one
of the sound modes (right panel). We set η/s0 = 1/(4π), τπ = 6τη, c

2
s = 1/3.

The solid line is for a boost velocity V = 0.05, the dashed line for V = 0.4
and the dotted line for V = 0.99, respectively. Figure taken from Ref. [5].
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Figure 2.7: The imaginary parts of the dispersion relations for a boost in x-direction
with velocity V = 0.9. The left panel shows the results for the parameter
set η/s0 = 1/(4π), τπ = 6τη, c

2
s = 1

3
, which fulfills the asymptotic causality

condition, while the right panel is for η/s0 = 1/(4π), τπ = τη, c
2
s = 1

3
, which

violates this condition. The dashed lines are for the shear modes, while the
solid lines are for the sound modes. Figure taken from Ref. [5].
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2.5.4 Causality of wave propagation

In the preceding discussion we have seen that transient theories of fluid dynamics can be
designed to be stable as long as the transverse and longitudinal modes fulfill asymptotic
causality conditions. In this section, we shall show that the causality of the theory as a
whole is guaranteed if the asymptotic stability condition is fulfilled. The group velocity
may become superluminal, or even diverge, as long as this apparent violation of causality
is restricted to a finite range of wavenumbers. The argument leading to this conclusion
is analogous to that of Sommerfeld and Brillouin in classical electrodynamics
[26, 27]. For instance, in the case of anomalous dispersion the group velocity may become
superluminal, but the causality of the theory as a whole is not affected.

The change in a fluid-dynamical variable induced by a general perturbation is given by

δX(x, t) =
∑
j

∫
dω δ̃Xj(ω) eiωt−ikj(ω)x , (2.118)

where δX(x, t) stands for δε, δuµ, or δπµν . The index j denotes the different modes,
i.e., the shear modes, the sound modes etc. The function kj(ω) is the inverted dispersion
relation ωj(k) of the respective mode. The Fourier components are given by∑

j

δ̃Xj(ω) =
1

2π

∫ ∞
−∞

dt δX(0, t) e−iωt . (2.119)

We assume that the incident wave has a well-defined front that reaches x = 0 not before
t = 0. Thus δX(0, t) = 0 for t < 0. This condition on δX(0, t) ensures that

∑
j δ̃Xj(ω)

is analytic in the lower half of the complex ω–plane [26]. On the other hand, in
Secs. 2.5.1, 2.5.3 we have found that the group velocity of the shear modes diverges for
certain values of k. These divergences correspond to singularities in the complex ω–
plane. However, if the asymptotic causality condition is fulfilled, the imaginary part of
the dispersion relation is always positive, i.e., the singularities only appear in the upper
half of the complex ω–plane. In this case, the system is also stable. On the other
hand, if the asymptotic causality condition is violated, the singularities may appear also
in the lower half-plane, i.e., for negative imaginary part of the dispersion relation,
and the system is unstable.

We shall now demonstrate that the divergences in the group velocity do not violate
causality as long as the asymptotic causality condition is satisfied, i.e., as long as the
asymptotic group velocity remains subluminal. To this end, we compute Eq. (2.118) by
contour integration in the complex ω–plane. To close the contour, we have to know the
asymptotic behavior of the dispersion relations. In our calculation, we found that the real
part of the dispersion relation at large k is proportional to k (see Eqs. (2.99) and (2.108)),
with a coefficient which is the large-k limit of the group velocity, i.e., vas

gj,

lim
k→∞

Re ωj(k) = vas
gj k . (2.120)

Then, in the large-k limit, the exponential becomes

exp[iωt− ikj(ω)x]→ exp

[
−i ω

vas
gj

(x− vas
gj t)

]
. (2.121)
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In the case x > vas
gj t, we have to close the integral contour in the lower half-plane. If

the asymptotic causality condition is fulfilled, there are no singularities in the lower
half-plane, and Eq. (2.118) vanishes. On the other hand, the contour should be closed
in the upper half-plane if x ≤ vas

gj t. Then, because of the singularities, Eq. (2.118)
may have a nonzero value. However, as long as we choose a parameter set for which
the asymptotic group velocity vas

gj is smaller than the speed of light, i.e., for which the
asymptotic causality condition is fulfilled, the signal propagation does not violate
causality, since the locations x where the disturbance has travelled lie within the cone
given by vas

gj, which, in turn, lies within the lightcone, q.e.d.

To conclude this section, we have shown that the asymptotic causality condition
not only implies stability in a general (Lorentz-boosted) frame, but also causality
of the theory as a whole.

2.6 Summary

In this chapter, we discussed the properties of linearized fluid-dynamical equations around
global equilibrium. The main goal was to determine whether hydrodynamic fluctuations
around global equilibrium are stable and causal – two fundamental properties that any
physical description should satisfy. We investigated these issues for ideal fluids and the
two formulations of relativistic dissipative fluid dynamics considered so far in this book:
Navier-Stokes theory and transient fluid dynamics (usually represented in the form of
Israel-Stewart theory).

First, we studied the linear properties of ideal fluids and recovered all its basic and well-
known features. In this case, transverse modes do not appear and the longitudinal modes
are purely propagating, describing the propagation of sound waves. The velocity of sound
of relativistic fluids was then obtained, and given by the (square root of the) derivative
of the pressure with respect to the energy density, at fixed entropy per particle (or per
net-charge). All modes in ideal fluid dynamics are stable and the theory is causal, as long
as the velocity of sound cs ≤ 1 – a property that is satisfied by all known microscopic
theories.

Next, we discussed the linear properties of relativistic Navier-Stokes theory. When
investigating perturbations performed on a fluid that is initially at rest, the linear prop-
erties of relativistic Navier-Stokes theory essentially reduce to those of its non-relativistic
version. In this case, transverse modes do appear and describe the diffusion of the velocity
field due to viscosity. The longitudinal modes still display the propagation of sound waves,
which now exhibit diffusion-type damping due to the shear and bulk viscosity of the fluid.
Nevertheless, novel striking features of a relativistic version of Navier-Stokes theory ap-
pear when considering perturbations on a moving fluid. In this case, we demonstrated
that unstable non-hydrodynamic modes, which simply do not exist in the non-relativistic
Navier-Stokes theory, appear in both the transverse and longitudinal degrees of freedom.
The existence of such unstable modes renders the general global-equilibrium solution of
relativistic Navier-Stokes theory linearly unstable, posing a fundamental problem to the
application of this theory to describe any relativistic fluid existing in Nature. It is this
fundamental problem that the transient theories of fluid dynamics, constructed in the
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previous chapter, aim to correct.
We then investigated the transverse and longitudinal modes of (second-order) transient

fluid dynamics and demonstrated that such theories can be constructed to be causal
and stable, at least when perturbed around global equilibrium. We argued (and later
proceeded to demonstrate) that as long as the asymptotic value of the group velocity
remains subluminal, vas

g ≤ 1, the theory is causal. We have shown that the condition
vas
g ≤ 1is equivalent to the requirement that the relaxation time scale τπ must not be

smaller than the ratio τeff/(1− c2
s), where τeff ∼ η/(ε0 +P0) ∼ β0η/s0 Thus, second-order

transient theories of fluid dynamics are not per se stable and causal; they may become
unstable and acausal if this condition is violated. This is an important conclusion
for practitioners of fluid dynamics, who frequently consider τπ and the shear viscosity-to-
entropy density ratio η/s0 to be independent from each other. We have demonstrated that
this is not the case if one wants the theory to remain causal. These findings also illuminate,
from a different perspective, why Navier-Stokes theory violates causality, because there
τπ → 0, while η remains nonzero. Therefore, transient theories of fluid dynamics, such
as Israel-Stewart theory, can actually be successfully applied to describe the dynamics of
relativistic fluids.

We finally recounted a time-honored argument from electrodynamics, proving that
causality of a theory is guaranteed if the large-wavenumber limit of the group velocity
remains subluminal. Thus, a divergence of the group velocity at some finite wavenumber,
which actually occurs for some modes of transient fluid dynamics, does not necessarily
imply that the theory as a whole becomes acausal.
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3 Fluid Dynamics from Kinetic Theory:
Traditional Approaches 05/17/2022

In Chapter 1 we have investigated how the equations of relativistic dissipative fluid dy-
namics can be derived phenomenologically, and in Chapter 2 we have discussed their
basic linear properties around equilibrium. In the remainder of this lecture series, the
derivation of relativistic dissipative fluid dynamics from a microscopic theory, in this
case the relativistic Boltzmann equation, will be carried out in great detail. In this
chapter, we start addressing this topic by discussing the two most widespread methods
usually employed to derive relativistic fluid dynamics from the Boltzmann equation: the
Chapman-Enskog expansion [1] and the method of moments as proposed by
Israel and Stewart [2, 3, 4].

This chapter is organized as follows: In Sec. 3.1 we briefly introduce the Boltzmann
equation and discuss how the fluid-dynamical degrees of freedom are defined in this setting.
In Sec. 3.2 we introduce Chapman-Enskog theory and derive the fluid-dynamical equations
following this procedure. In Sec. 3.3 we discuss Israel’s and Stewart’s original derivation
of transient fluid dynamics and the differences to Chapman and Enskog’s approach.

3.1 Matching fluid-dynamical with kinetic degrees of
freedom

We start with the relativistic Boltzmann equation for the single-particle distribu-
tion function fk,

kµ∂µfk = C [f ] . (3.1)

Here, the 4-momentum of a particle is kµ = (k0,k)T , with k0 =
√

k2 +m2 being the on-
shell energy and m its mass. For the collision term, we consider only binary elastic
collisions,

C [f ] =
1

ν

∫
dK ′dPdP ′Wkk′→pp′

(
fpfp′ f̃kf̃k′ − fkfk′ f̃pf̃p′

)
, (3.2)

where ν is a symmetry factor (= 2 for identical particles), Wkk′→pp′ is the Lorentz-
invariant transition rate, and dK ≡ ddofd

3k/ [(2π)3k0] is the Lorentz-invariant mo-
mentum-space volume, with ddof being the number of internal degrees of freedom. We
introduced the notation

f̃k ≡ 1− afk , (3.3)

where a = 1 (a = −1) for fermions (bosons) and a = 0 for a classical gas.

57



3 Fluid Dynamics from Kinetic Theory: Traditional Approaches

In kinetic theory, the conserved particle current Nµ and the energy-momentum
tensor T µν are expressed as moments of the single-particle distribution function
fk,

Nµ = 〈kµ〉 , (3.4)

T µν = 〈kµkν〉 , (3.5)

where the angular brackets are defined as

〈· · · 〉 ≡
∫
dK (· · · ) fk , (3.6)

i.e., a momentum-space average with the distribution function fk as weight factor.

3.1.1 Macroscopic conservation laws

The macroscopic conservation laws are expressed in terms of continuity equations.
They can be obtained using basic properties of the collision operator, as will be derived
in this subsection. To this end, it is convenient to consider the following set of integrals
of the collision operator,∫

dK GkC [f ] =
1

ν

∫
dKdK ′dPdP ′Wkk′→pp′Gk

(
fpfp′ f̃kf̃k′ − fkfk′ f̃pf̃p′

)
, (3.7)

where Gk is an arbitrary function of the 3-momentum k. The function Gk can be a
Lorentz-tensor of arbitrary rank.

We now use a set of properties satisfied by the transition rate, Wkk′→pp′ . First, we note
that Wkk′→pp′ is invariant under the exchange k↔ k′ or p↔ p′, i.e.,

Wkk′→pp′ = Wk′k→pp′ = Wk′k→p′p . (3.8)

In other words, the transition probability per unit of time from an initial state (particles
before the collision) to a final state (particles after the collision) cannot depend on which
particle carries the incoming momentum k or k′ or the outgoing momentum p or p′. This
property allows us to rewrite the collision integral (3.7) in the following form∫

dK GkC [f ] =
1

ν

∫
dKdK ′dPdP ′Wkk′→pp′

Gk +Gk′

2

(
fpfp′ f̃kf̃k′ − fkfk′ f̃pf̃p′

)
.

(3.9)
Next, we note that time-reversal symmetry further imposes that the transition rate is
invariant under the exchange kk′ ↔ pp′, i.e.,

Wkk′→pp′ = Wpp′→kk′ . (3.10)

That is, collisions that change the momenta of the particles in the direction (k,k′) →
(p,p′) are as likely to happen as those that change the momenta in the direction (p,p′)→
(k,k′). If we impose this fundamental symmetry, we derive the following relation,∫

dK GkC [f ] =
1

4ν

∫
dKdK ′dPdP ′Wkk′→pp′ (Gk +Gk′ −Gp −Gp′)

×
(
fpfp′ f̃kf̃k′ − fkfk′ f̃pf̃p′

)
. (3.11)
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3.1 Matching fluid-dynamical with kinetic degrees of freedom

Expression (3.11) for the collision integral (3.7) is very useful since it clearly shows that
it vanishes if Gk is a quantity that is conserved in microscopic collisions between
the particles. Such quantities are well-known in physics and are the 4-momentum, kµ,
and the charge or, since we only consider binary elastic collisions, the particle number.
Thus, taking Gk = 1 or Gk = kµ, we obtain∫

dK C [f ] = 0 , (3.12)∫
dK kµC [f ] = 0 . (3.13)

Since there are no other quantities which are conserved in particle collisions, no other
integral of the collision term vanishes – all other integrals will lead to finite contributions.

If we integrate the Boltzmann equation over 4-momentum K and use property (3.12) of
the collision operator, we arrive at the continuity equation related to particle-number
conservation (or net-charge conservation, if we consider processes that change the par-
ticle number),∫

dK kµ∂µfk =

∫
dK C [f ] = 0 ⇐⇒ ∂µ 〈kµ〉 = ∂µN

µ = 0 . (3.14)

Similarly, if we multiply the Boltzmann equation by kν , integrate over K, and use property
(3.13) of the collision operator, we arrive at the continuity equation expressing energy-
momentum conservation,∫

dK kµkν∂µfk =

∫
dK kνC [f ] = 0 ⇐⇒ ∂µ 〈kµkν〉 = ∂µT

µν = 0 . (3.15)

As already mentioned, any other integral of the collision operator will not vanish and
hence, no additional conservation laws can be derived from the Boltzmann equation. We
note, for spin-zero particles, angular-momentum conservation is a consequence of energy-
momentum conservation, cf. Exercise 1.5, as long as the energy-momentum tensor is
symmetric – a property that is fulfilled by definition, cf. Eq. (3.5).

3.1.2 Fluid-dynamical variables and matching conditions

The particle currentNµ and the energy-momentum tensor T µν can be tensor-decomposed
with respect to the fluid 4-velocity uµ. We introduce uµ as the time-like, normalized
(uµu

µ = 1) eigenvector of the energy-momentum tensor,

T µνuν = εuµ , (3.16)

where the eigenvalue ε is the energy density. This choice of fluid velocity is tradition-
ally referred to as the Landau frame [5], see Sec. 1.3.3. Next, we divide the momentum
of the particles kµ into two parts: one parallel and one orthogonal to uµ,

kµ = Eku
µ + k〈µ〉 , (3.17)
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where we defined the scalar
Ek ≡ kµuµ , (3.18)

which is identical to the energy of the particle in the rest frame of the fluid, Ek =
kµuLR,µ = k0 =

√
k2 +m2, and used the notation A〈µ〉 = ∆µ

νA
ν , with ∆µν the projection

operator onto the 3-space orthogonal to uµ given by Eq. (1.25).
Then, the tensor decomposition of Nµ and T µν reads

Nµ = nuµ + nµ , (3.19)

T µν = ε uµuν −∆µν (P0 + Π) + πµν , (3.20)

where the particle density n, the particle-diffusion current nµ, the energy density
ε, the shear-stress tensor πµν , and the sum of thermodynamic pressure P0 and
bulk-viscous pressure Π are defined by

n ≡ 〈Ek〉 , nµ ≡
〈
k〈µ〉
〉
, ε ≡

〈
E2

k

〉
, πµν ≡

〈
k〈µk ν〉

〉
, P0 + Π ≡ −1

3
〈∆µνkµkν〉 , (3.21)

where A〈µν〉 ≡ ∆µν
αβA

αβ, with ∆µν
αβ as defined in Eq. (1.60).

Next, we introduce the local-equilibrium distribution function as

f0k = [exp (β0Ek − α0) + a]−1 , (3.22)

where β0 ≡ 1/T is the inverse temperature and α0 = µ/T is the thermal potential,
i.e., the ratio of the chemical potential µ to temperature, respectively. The values of
α0 and β0 are defined by the matching conditions, as explained in Sec. 1.3.1,

n ≡ n0 = 〈Ek〉0 , ε ≡ ε0 =
〈
E2

k

〉
0
, (3.23)

where we use the following notation for the momentum-space average with the local-
equilibrium distribution function as weight factor

〈· · · 〉0 ≡
∫
dK (· · · ) f0k . (3.24)

Then, the separation between thermodynamic pressure and bulk-viscous pressure is achieved
by

P0 = −1

3
〈∆µνkµkν〉0 (3.25)

and

Π = −1

3
〈∆µνkµkν〉δ , (3.26)

where
〈· · · 〉δ = 〈· · · 〉 − 〈· · · 〉0 . (3.27)

In equilibrium, the bulk-viscous pressure vanishes by definition, Π0 ≡ 0. The particle or
charge diffusion current nµ and the shear-stress tensor πµν vanish as well, nµ0 ≡ 〈k〈µ〉〉0 = 0,
πµν0 = 〈k〈µkν〉〉0 = 0. This is obvious from the symmetries of the equilibrium distribution
f0k. This, in turn, implies that

nµ =
〈
k〈µ〉
〉
δ
, πµν =

〈
k〈µkν〉

〉
δ
. (3.28)

60



3.2 Chapman-Enskog theory

As shown in Sec. 1.3.3, the conservation laws provide equations of motion only for n,
ε, and uµ, and hence one still needs to derive the equations of motion for the dissipative
corrections Π, nµ, and πµν . In kinetic theory, this task can be performed rigorously.
Nevertheless, there are several methods that can be used to determine the required equa-
tions and transport coefficients. In the following, we review the two most traditional
methods: Chapman-Enskog theory [1] and the method of moments proposed by
Israel and Stewart [2, 3, 4].

3.2 Chapman-Enskog theory

The Chapman-Enskog expansion [1] is the most traditional formalism used to de-
rive fluid dynamics from the Boltzmann equation. It was originally developed for non-
relativistic systems, but Israel proved that it could be used with almost no modifications
to describe relativistic systems as well [6, 7].

The Chapman-Enskog formalism corresponds to the microscopic implementation
of the gradient expansion, already discussed in Chapter 1. It assumes that the single-
particle distribution function depends only on the five primary fluid-dynamical vari-
ables, i.e., temperature, chemical potential, and the three independent components of
the fluid-velocity field, as well as their gradients. The corrections to the local distribu-
tion function are then systematically arranged in terms of an expansion in powers of
the Knudsen number. As is well known and will be shown in this section, the first-
order truncation of the expansion leads to Navier-Stokes theory. Keeping second
and higher-order terms one obtains the Burnett and super-Burnett equations, respectively
[8]. In principle, one can construct the solution to an arbitrarily high order in Knudsen
number.

As first pointed out by Grad, the Chapman-Enskog expansion is an asymptotic se-
ries [9]. Also, in the relativistic case, the Chapman-Enskog expansion leads to unstable
equations of motion [10] and, therefore, has very little use in the description of realistic
systems. Despite this major drawback, the Chapman-Enskog expansion is an important
development in kinetic theory and its results are useful to understand the asymptotic
behavior of the Boltzmann equation.

The first step is to rewrite the Boltzmann equation (3.1) by decomposing the 4-derivative
∂µ into its time-like and space-like parts,

∂µ = uµu
ν∂ν + ∆ν

µ∂ν ≡ uµD +∇µ , (3.29)

where we defined the comoving derivative

D ≡ uν∂ν , (3.30)

which is equal to the ordinary time derivative in the local rest frame of the fluid, DLR ≡
∂/∂t, and the 3-space gradient

∇µ ≡ ∆ν
µ∂ν , (3.31)

which is equal to the ordinary spatial gradient in the local rest frame of the fluid, ∇LR,µ ≡
(0,∇). The Boltzmann equation (3.1) then reads

Dfk +
1

Ek

kµ∇µfk =
1

Ek

C[f ] . (3.32)
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In the local rest frame of the system, the gradient ∇µ determines an inverse macro-
scopic length scale, L−1, over which the single-particle distribution function (and its
momentum integrals) varies in space. Similarly, the covariant derivative D defines an
inverse macroscopic time scale, τ̄−1. It is convenient to redefine these derivatives as
∇µ ≡ L−1∇̂µ and D ≡ τ̄−1D̂, where ∇̂µ and D̂ are unitless derivatives of order one. Then,
by multiplying the Boltzmann equation by the mean free path λ of the particles, we
obtain the dimensionless equation of motion

Kn D̂fk +
Kn

Ek

kµ∇̂µfk =
λ

Ek

C[f ] , (3.33)

where Kn= λ/L is the standard Knudsen number. For the sake of completeness, we
also introduced another type of Knudsen number, Kn = λ/τ̄ , which characterizes the
macroscopic time variations relative to the mean free path.

In Chapman-Enskog theory a solution of the Boltzmann equation is obtained by ex-
panding the single-particle distribution function in powers of Kn,

fk = f
(0)
k + Kn f

(1)
k + Kn2 f

(2)
k + . . . . (3.34)

If the Knudsen number is small, it should be possible to truncate this expansion and find
an approximate expression for fk. This solution is found using perturbation theory, by
substituting Eq. (3.34) into Eq. (3.33) and solving it order by order in Knudsen number.

First, we substitute expression (3.34) into the collision term (3.2), obtaining

C[f ] = C(0) + Kn C(1) + Kn2 C(2) + . . . , (3.35)

where the first two terms of the expansion are

C(0) ≡ 1

ν

∫
dK ′dPdP ′Wkk′→pp′

(
f (0)
p f

(0)
p′ f̃

(0)
k f̃

(0)
k′ − f

(0)
k f

(0)
k′ f̃

(0)
p f̃

(0)
p′

)
, (3.36)

C(1) ≡ 1

ν

∫
dK ′dPdP ′Wkk′→pp′

[
f (0)
p f

(0)
p′ f̃

(0)
k f̃

(0)
k′

(
f

(1)
p

f
(0)
p

+
f

(1)
p′

f
(0)
p′

− af
(1)
k

f̃
(0)
k

− af
(1)
k′

f̃
(0)
k′

)

− f (0)
k f

(0)
k′ f̃

(0)
p f̃

(0)
p′

(
f

(1)
k

f
(0)
k

+
f

(1)
k′

f
(0)
k′

− af
(1)
p

f̃
(0)
p

− a
f

(1)
p′

f̃
(0)
p′

)]
. (3.37)

Exercise 3.1: Prove Eq. (3.37).

Note that we introduced two types of Knudsen numbers: one related to temporal
variations of integrals of fk, Kn, and another related to spatial variations of integrals
of fk, Kn. In general, these two quantities do not need to be equal or even related. On
the other hand, in the fluid-dynamical limit, it is reasonable to expect that these two
quantities are related or, at least, of the same order of magnitude. In the Chapman-
Enskog expansion, one goes a step further and assumes that Kn and Kn are exactly the

62



3.2 Chapman-Enskog theory

same, Kn = Kn. Only with this assumption it becomes possible to solve the Boltzmann
equation perturbatively in powers of Kn, as was initially proposed. We shall see later that
this assumption will ensure that time-like gradients can always be replaced by space-like
gradients and, consequently, one can always arrange the solution of the single-particle
distribution function in powers of space-like gradients.

Therefore, using Kn = Kn, and inserting the expansions (3.34) and (3.35) into the
Boltzmann equation (3.33), one obtains by comparing order by order in Kn the fol-
lowing solution,

0 = C(0) , (3.38)[
D̂fk

](1)

+
1

Ek

kµ∇̂µf
(0)
k =

λ

Ek

C(1) , (3.39)[
D̂fk

](2)

+
1

Ek

kµ∇̂µf
(1)
k =

λ

Ek

C(2) . (3.40)

Equation (3.38) can be used to solve for f
(0)
k . Once f

(0)
k is known, Eq. (3.39) can be used

to solve for f
(1)
k and so on. In principle, one could go on indefinitely and construct the

solution fk to any order in Knudsen number. However, after solving for the correction of
first order in Knudsen number, the calculations start to become cumbersome.

Note that in Eqs. (3.38) – (3.40), we wrote
[
D̂fk

](n)

to indicate terms of order Knn

from the time derivative. This needs to be distinguished from D̂f
(n)
k because, as we shall

see below, the latter can have contributions of all orders in Kn, i.e.,

D̂f
(n)
k =

[
D̂f

(n)
k

](1)

+ Kn
[
D̂f

(n)
k

](2)

+ . . . , (3.41)

where
[
D̂f

(n)
k

](m)

is the coefficient of order Knn+m in the Boltzmann equation (3.33).

Therefore, [
D̂fk

](0)

= 0 , (3.42)[
D̂fk

](1)

=
[
D̂f

(0)
k

](1)

, (3.43)[
D̂fk

](2)

=
[
D̂f

(0)
k

](2)

+
[
D̂f

(1)
k

](2)

, (3.44)

and so on.
Let us now clarify why time derivatives contain also higher orders in the Knudsen

number. To this end, we rewrite the conservation laws Eqs. (1.77) – (1.79), under the
assumption Kn = Kn as

D̂ε0 + (ε0 + P0 + Π) θ̂ − παβσ̂αβ = 0 , (3.45)

(ε0 + P0 + Π) D̂uµ − ∇̂µ (P0 + Π)− πµβD̂uβ + ∆µ
α∇̂βπ

αβ = 0 , (3.46)

D̂n0 + n0θ̂ − nµD̂uµ + ∇̂µn
µ = 0 . (3.47)
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3 Fluid Dynamics from Kinetic Theory: Traditional Approaches

Here, we introduced θ ≡ L−1θ̂ and σµν ≡ L−1σ̂µν , with the expansion scalar θ and the
shear tensor σµν defined in Eqs. (1.33) and (1.80). In order to obtain Eqs. (3.46), (3.47)
from Eqs. (1.78), (1.79) we also rewrote ∂µn

µ and ∆µ
α∂βπ

αβ using Eq. (3.29) and the
orthogonality relations nµuµ = 0, uβπ

αβ = 0.
Let us now define the thermodynamic functions

Inq ≡
(−1)q

(2q + 1)!!

∫
dKf0kE

n−2q
k

(
m2 − E2

k

)q
≡ (−1)q

(2q + 1)!!

〈
(kµuµ)n−2q(∆µνkµkν)

q
〉

0
, (3.48)

Jnq ≡
(−1)q

(2q + 1)!!

∫
dKf0kf̃0kE

n−2q
k

(
m2 − E2

k

)q
≡ (−1)q

(2q + 1)!!

〈
f̃0k(kµuµ)n−2q(∆µνkµkν)

q
〉

0
. (3.49)

From Eqs. (3.23) – (3.25) we observe that

n0 = I10 , ε0 = I20 , P0 = I21 . (3.50)

From the definition of f0k, Eq. (3.22), we derive the identity

dInq = Jnq dα0 − Jn+1,q dβ0 . (3.51)

Using Eq. (3.22) in the definitions (3.48), (3.49) and integrating by parts also yields the
identity

β0Jnq = In−1,q−1 + (n− 2q) In−1,q , (3.52)

from which we deduce
I10 = β0J21 , I20 + I21 = β0J31 . (3.53)

From the definition (3.49) one also readily proves the identity

Jnq ≡ (2q + 3)Jn,q+1 +m2Jn−2,q , (3.54)

which also holds for the integrals Inq.

Exercise 3.2: Prove Eqs. (3.51), (3.52), and (3.54).

For further use, we also define the thermodynamic functions

Gnm = Jn0Jm0 − Jn−1,0Jm+1,0 , Dnq = Jn+1,qJn−1,q − J2
nq . (3.55)

From Eqs. (3.50) and (3.51) we then derive the following thermodynamic relations,

dα0 = − J20

D20

dε0 +
J30

D20

dn0 , (3.56)

dβ0 = − J10

D20

dε0 +
J20

D20

dn0 . (3.57)
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3.2 Chapman-Enskog theory

Exercise 3.3: Prove Eqs. (3.56) and (3.57).

Rewriting the total derivative into a (dimensionless time-like derivative) and using the
hydrodynamic equations of motion (3.45) and (3.47), we finally obtain equations of motion
for α0 and β0,

D̂α0 =
1

D20

{
[(ε0 + P0) J20 − n0J30] θ̂ + J20

(
Πθ̂ − παβσ̂αβ

)
− J30

(
∇̂µn

µ − nµD̂uµ
)}

,

(3.58)

D̂β0 =
1

D20

{
[(ε0 + P0) J10 − n0J20] θ̂ + J10

(
Πθ̂ − παβσ̂αβ

)
− J20

(
∇̂µn

µ − nµD̂uµ
)}

.

(3.59)

Exercise 3.4: Prove Eqs. (3.58) and (3.59).

We see that the time-like derivatives are proportional to terms of first order in gradi-
ents (the terms ∼ θ̂) or, equivalently, proportional to one power of the Knudsen number,
respectively, but that also terms enter which are proportional to gradients times dissi-
pative quantities (Π, nµ, πµν), which (according to Navier-Stokes theory) are itself of
at least first order in the Knudsen number. Therefore, time derivatives of a quantity of
given order in Kn in general involve also higher orders in Kn, as written formally in
Eq. (3.41) for f

(n)
k .

3.2.1 Solving the Chapman-Enskog expansion: zeroth- and
first-order solutions

The solution of Eq. (3.38) is well known, and is given by the local-equilibrium single-
particle distribution function (3.22),

f
(0)
k = f0k = [exp (β0Ek − α0) + a]−1 , (3.60)

where α0(X), β0(X), and uµ(X) are functions of space and time (global equilibrium cor-
responds to the particular case where there is no space-time dependence). Therefore, the
zeroth-order truncation of the Chapman-Enskog expansion leads to the equa-
tions of ideal fluid dynamics, with all conserved currents being given by their respec-
tive equilibrium values. In this case, we have already demonstrated in Chapter 1
that the continuity equations describing (net-)particle and energy-momentum conserva-
tion are sufficient to describe the dynamics of the fluid, since the pressure is determined
by an equation of state (here, the equation of state is the one of a dilute gas, given by
P0 = I21(α0, β0)).
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3 Fluid Dynamics from Kinetic Theory: Traditional Approaches

However, ideal fluid dynamics does not arise from a solution of the Boltzmann equation
since f0k alone does not satisfy this equation: the collision term vanishes, Eq. (3.38),
but the left-hand side of the Boltzmann equation obviously does not vanish if
α0, β0, and uµ are functions of space and time. On the other hand, the above result implies
that ideal fluid dynamics can be interpreted as the zeroth-order truncation of an
expansion in powers of Knudsen number. In this sense, it should be understood
solely as an approximate solution, that will never be exactly realized but, in practice,
may lead to a reliable description of several physical systems.

The local-equilibrium variables α0 and β0 are defined by the matching conditions (3.23),
while the fluid 4-velocity is defined by the choice of frame (in our case the Landau frame,

Eq. (3.16)). In order to satisfy these constraints, for all n ≥ 1 the corrections f
(n)
k must

satisfy ∫
dK Ek f

(n)
k = 0 , (3.61)∫

dK E2
k f

(n)
k = 0 , (3.62)∫

dK Ekk
〈µ〉 f

(n)
k = 0 . (3.63)

The last condition can be obtained by projecting Eq. (3.16) onto ∆α
µ and ensures that

there is no flow of energy relative to uµ. These conditions guarantee that, to any order
of approximation, the solution depends solely on α0, β0, and uµ, and their gradients.
Also, they remove the freedom that we could add the solution of the homogeneous Boltz-
mann equation to the solution of the perturbative series (3.34), i.e., a global-equilibrium
distribution function with another temperature, chemical potential, and velocity.

In the following, we shall construct the solution of the Chapman-Enskog expansion to
first order in Knudsen number, i.e., the solution to Eq. (3.39). Using Eqs. (3.43) and
(3.60), as well as simplifying Eq. (3.37) using Eq. (3.60), we must solve[

D̂f0k

](1)

+
1

Ek

kµ∇̂µf0k = −λĈf (1)
k , (3.64)

where we defined the linear collision operator acting on f
(1)
k as

Ĉf
(1)
k ≡ 1

νEk

∫
dK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′

×

(
f

(1)
k

f0kf̃0k

+
f

(1)
k′

f0k′ f̃0k′
− f

(1)
p

f0pf̃0p

−
f

(1)
p′

f0p′ f̃0p′

)
. (3.65)

Exercise 3.5: Prove Eq. (3.65), i.e., that Ĉf
(1)
k ≡ −C(1)/Ek, with C(1) given by Eq.

(3.37).

(Hint: Using Eq. (3.22) and the fact that energy-momentum is conserved in binary colli-
sions, first prove that f0kf0k′ f̃0pf̃0p′ ≡ f0pf0p′ f̃0kf̃0k′ .)
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3.2 Chapman-Enskog theory

The time-like and space-like derivatives of f0k appearing on the left-hand side of Eq. (3.64)
are straightforward to calculate using Eq. (3.60),

D̂f0k = −f0kf̃0k

(
EkD̂β0 + β0k

〈ν〉D̂uν − D̂α0

)
, (3.66)

∇̂µf0k = −f0kf̃0k

(
Ek∇̂µβ0 + β0k

〈ν〉∇̂µuν − ∇̂µα0

)
, (3.67)

where we used that uνD̂uν = uν∇̂µuν = 0.
All time-like derivatives of α0, β0, and uµ that appear in Eq. (3.66) can be replaced by

space-like gradients using the conservation equations (3.45) – (3.47), as well as Eqs. (3.58),
(3.59), respectively. However, note that the bulk-viscous pressure, particle-diffusion 4-
current, and shear-stress tensor do not have zeroth-order contributions in the Knudsen
number, because they vanish in equilibrium,

(Π)(0) = −1

3
〈∆µνkµkν〉0 − P0 = 0 , (3.68)

(nµ)(0) =
〈
k〈µ〉
〉

0
= 0 , (3.69)

(πµν)(0) =
〈
k〈µk ν〉

〉
0

= 0 , (3.70)

i.e., the dissipative currents are at least of first order in Knudsen number. Therefore,
substituting these results into Eqs. (3.46), (3.58), and (3.59), one obtains

D̂α0 =
(ε0 + P0) J20 − n0J30

D20

θ̂ +O
(
Kn2

)
, (3.71)

D̂β0 =
(ε0 + P0) J10 − n0J20

D20

θ̂ +O
(
Kn2

)
, (3.72)

D̂uµ =
1

ε0 + P0

∇̂µP0 +O
(
Kn2

)
. (3.73)

Therefore, to first order in Knudsen number, the comoving time derivatives of α0, β0, and
uµ are linearly proportional to their spatial gradients. This whole procedure illustrates
the subtleties involved in replacing time derivatives by spatial ones in Chapman-Enskog
theory. To first order, the procedure is fairly simple, but it can get rather complicated
when one goes to higher orders, since it is extremely difficult to establish a priori what
is the general structure of the contributions of higher order in Knudsen number.

Then, Eq. (3.64) can be reduced to

f0kf̃0k

(
Akθ̂ +Bkk

〈µ〉∇̂µα0 +
β0

Ek

k〈µk ν〉σ̂µν

)
= λĈf

(1)
k , (3.74)

where we made use of the thermodynamic relation (1.103) and the fact that k〈µ〉k〈ν〉 =
k〈µk ν〉 + ∆µν

(
∆αβkαkβ

)
/3. We furthermore introduced the scalar functions

Ak ≡
(ε0 + P0) J10 − n0J20

D20

Ek −
(ε0 + P0) J20 − n0J30

D20

+
β0

3Ek

∆αβkαkβ , (3.75)

Bk ≡ h−1
0 −

1

Ek

. (3.76)
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Exercise 3.6: Prove Eq. (3.74).

We note that the linear operator Ĉ defined in Eq. (3.65) has five degenerate eigen-
functions (1, Ek, and k〈µ〉, multiplied by f0kf̃0k), with zero eigenvalues

Ĉ(f0kf̃0k 1) = 0 , Ĉ(f0kf̃0k Ek) = 0 , Ĉ(f0kf̃0k k
〈µ〉) = 0 . (3.77)

These correspond to quantities which are conserved in microscopic collisions.
Nevertheless, solving Eq. (3.74) is still a complicated task because one needs to invert

the collision operator Ĉ in order to obtain f
(1)
k . Still, since the equation is linear in f

(1)
k

and the left-hand side is linear in the gradients θ̂, ∇̂µα0, and σ̂µν , one already knows that

the general solution for f
(1)
k must have the following form,

f
(1)
k

f0kf̃0k

= ϕs
k θ̂ + ϕv

k β0k
〈µ〉∇̂µα0 + ϕt

k β
2
0k
〈µkν〉σ̂µν + ϕhom

k . (3.78)

The functions ϕik, i =s,v,t, are dimensionless and depend on momentum only through
Ek, i.e., ϕik = ϕik (Ek). The function ϕhom

k is the homogeneous solution,

Ĉϕhom
k = 0 , (3.79)

which is constructed as a linear combination of the eigenfunctions 1, Ek, and k〈µ〉,

ϕhom
k = a0 + a1Ek + a2µk

〈µ〉 . (3.80)

The coefficients a0, a1, and a2µ must be determined using the matching conditions (3.61)
– (3.63) for n = 1.

For the following, it is advantageous to define

αs
r ≡

∫
dK Er

kAkf0kf̃0k

=
(ε0 + P0) J10 − n0J20

D20

Jr+1,0 −
(ε0 + P0) J20 − n0J30

D20

Jr,0 − β0 Jr+1,1 , (3.81)

αv
r ≡

1

3

∫
dK Er

kBk

(
∆αβkαkβ

)
f0kf̃0k = Jr+1,1 − h−1

0 Jr+2,1 , (3.82)

αt
r ≡

2

15
β0

∫
dK Er−1

k

(
∆αβkαkβ

)2
f0kf̃0k = 2β0Jr+3,2 , (3.83)

where we used Eqs. (3.49), (3.75), and (3.76).
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Exercise 3.7: Show that, in the massless limit, αs
r vanishes for any value of r.

(Hint: Note that, for m = 0, In0 = 3In1, Jn0 = 3Jn1, cf. Eqs. (3.48), (3.49). For the proof,
use the relations (1.103), (3.51), and (3.53).)

Then, inserting the Ansatz (3.78) into Eq. (3.74), multiplying by an arbitrary power of
energy, Er

k, and integrating over momentum, dK, one obtains the equation satisfied by
ϕs
k,

αs
r =

λ

ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′E

r−1
k

(
ϕs
k + ϕs

k′ − ϕs
p − ϕs

p′

)
. (3.84)

Here, we have used orthogonality relations on the left- and right-hand sides. On the
left-hand side, we have used the relation∫

dK F(Ek) k〈µ1 · · · k µm〉k〈ν1 · · · kνn〉 =
n! δmn

(2n+ 1)!!
∆µ1···µm
ν1···νn

∫
dK F(Ek)

(
∆αβkαkβ

)n
,

(3.85)
for an arbitrary function F(Ek), which depends only on Ek = kµuµ. The proof of this
relation can be found in App. 4.7. To obtain the right-hand side of Eq. (3.84), we have
used the fact that the tensor structure of a quantity

(Ar)µ1···µmν1···νn ≡
1

ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′E

r−1
k k〈µ1 · · · k µm〉

×
(
Hk k〈ν1 · · · kνn〉 + Hk′ k

′
〈ν1 · · · k

′
νn〉 − Hp p〈ν1 · · · pνn〉 − Hp′ p

′
〈ν1 · · · p

′
νn〉
)
, (3.86)

where Hk is an arbitrary function of Ek, can only be of a form which satisfies

(Ar)µ1···µmν1···νn = δmnA(n)
r ∆µ1···µm

ν1···νn , (3.87)

with

A(n)
r =

1

ν (2n+ 1)

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′E

r−1
k k〈µ1 · · · k µn〉

×
(
Hk k〈µ1 · · · kµn〉 + Hk′ k

′
〈µ1 · · · k

′
µn〉 − Hp p〈µ1 · · · pµn〉 − Hp′ p

′
〈µ1 · · · p

′
µn〉
)
, (3.88)

cf. Eqs. (4.46) and (4.48) in Chapter 4, where these relations are explicitly proven.
Similarly, multiplying Eq. (3.74) by Er

kk
〈ν〉 and integrating over dK, one obtains the

equation for ϕv
k,

αv
r =

β0λ

3ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′

× Er−1
k k〈µ〉

(
ϕv
kk
〈µ〉 + ϕv

k′k
′〈µ〉 − ϕv

pp
〈µ〉 − ϕv

p′p
′〈µ〉) . (3.89)

Finally, multiplying by Er
kk
〈αk β〉 and once more integrating over dK, one obtains the

equation for ϕt
k,

αt
r =

β2
0λ

5ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′

× Er−1
k k〈µkν〉

(
ϕt
kk
〈µk ν〉 + ϕt

k′k
′〈µk′ν〉 − ϕt

pp
〈µpν〉 − ϕt

p′p
′〈µp′ν〉

)
. (3.90)
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Exercise 3.8: Verify Eqs. (3.84), (3.89), and (3.90) by an explicit calculation.

The next step is to expand the functions ϕik in terms of a complete basis formed of
Ek. The most common approach is to simply take a power series,

ϕik =
N i∑
n=0

εinE
n
k , (3.91)

where for practical purposes the series is truncated at some power N i <∞. Note that for
the scalar contribution (i = s), the terms n = 0, 1 of the expansion can be incorporated
into the homogeneous solution, while for the vector contribution (i = v) the same occurs
for the n = 0 term of the expansion. Overall, this reduces the problem of solving for
the remaining coefficients εin. Inserting the expansion (3.91) into Eqs. (3.84), (3.89), and
(3.90) leads to the following linear algebraic relations for the εin,

αir = λ
N i∑
n=0

Airnεin , i = s, v, t . (3.92)

The dimension of the matrices Airn is determined by N i; the more terms one includes
in the expansion (3.91), the higher the dimension of the matrix becomes. In practice,
one can never include an infinite number of terms in the series, but one can check its
convergence and truncate at that N i for which ϕik reaches the required accuracy (up to a
given value of momentum).

The matrices Airn are defined as

As
rn =

1

ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′E

r−1
k

(
En

k + En
k′ − En

p − En
p′

)
,

Av
rn =

β0

3ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′

×Er−1
k k〈µ〉

(
En

kk
〈µ〉 + En

k′k
′〈µ〉 − En

pp
〈µ〉 − En

p′p
′〈µ〉) , (3.93)

At
rn =

β2
0

5ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′

×Er−1
k k〈µkν〉

(
En

kk
〈µk ν〉 + En

k′k
′ 〈µk′ ν〉 − En

pp
〈µpν〉 − En

p′p
′ 〈µp′ ν〉

)
.

3.2.2 Minimal truncation scheme

The conservation of the number of particles (in binary collisions), energy, and momentum
make the following components of the collision matrices As and Av vanish: As

r0, As
r1,

As
1n, As

2n, Av
r0, and Av

1n. Hence, these matrices have some rows and columns with all
their entries being zero. Furthermore, from the definitions (3.81), (3.82), the identities
(3.50), (3.51), and (3.53), as well as the thermodynamical relation (1.103) one can prove
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3.2 Chapman-Enskog theory

that the components αs
1, αs

2, and αv
1 are also zero and, consequently, Eq. (3.92) becomes

a trivial identity for r = 1, 2 (i = s) and r = 1 (i = v). When inverting Eq. (3.92), these
trivial lines and columns must be removed, making it possible to solve for all, except three,
expansion coefficients εin. The three coefficients that are undetermined in Eq. (3.92) must
be obtained from the matching conditions – they actually correspond to terms that can
be incorporated into the homogeneous solution specified in Eq. (3.80). For this reason,
when truncating the expansion (3.91), one must have at least N s ≥ 2 and Nv ≥ 1.

Exercise 3.9:

(i) Using particle-number and energy-momentum conservation in binary elastic colli-
sions it is fairly easy to see that As

r0, As
r1, and Av

r0 vanish identically. Using the
symmetries of Wkk′→pp′ and the properties of the equilibrium distribution (3.22),
show that also As

1n, As
2n, and Av

1n vanish.

(ii) Following the hints in the text, show that αs
1, αs

2, and αv
1 are zero.

In order to better understand this, let us assume the simplest possible truncation scheme
for Eq. (3.91), i.e., N s = 2, Nv = 1, and N t = 0. Then, the non-trivial lines of Eq. (3.92)
(obtained by removing all contributions related to the homogeneous solution) lead to the
following equations for εs2, εv1, and εt0 ,

εs2 =
αs

0

λAs
02

, εv1 =
αv

0

λAv
01

, εt0 =
αt

0

λAt
00

, (3.94)

leaving εs0, εs1, and εv0 still undetermined. On the other hand, the matching conditions
(3.61) – (3.63), together with the orthogonality relation (3.85), provide the following
additional constraints that must be satisfied by ϕs

k and ϕv
k∫

dK Ekϕ
s
kf0kf̃0k = 0 , (3.95)∫

dK E2
kϕ

s
kf0kf̃0k = 0 , (3.96)∫

dK Ek (∆µνk
µkν)ϕv

kf0kf̃0k = 0 . (3.97)

These equations relate the so far undetermined coefficients to εs2 and εv1,(
J10 J20

J20 J30

)(
εs0
εs1

)
= −

(
J30

J40

)
εs2 , (3.98)

J31ε
v
0 = −J41ε

v
1 . (3.99)
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With Eq. (3.94), the solution is

εs0 =
D30

D20

αs
0

λAs
02

, (3.100)

εs1 =
G23

D20

αs
0

λAs
02

, (3.101)

εv0 = −J41

J31

αv
0

λAv
01

, (3.102)

where we used the thermodynamic functions (3.55).

Exercise 3.10: Prove Eqs. (3.95) – (3.102).

With all the coefficients of the truncated expansion solved for, we can write down the
first-order solutions to the bulk-viscous pressure,

(Π)(1) = −1

3
〈∆µνkµkν〉(1) = −1

3

∫
dK (∆µνkµkν) f

(1)
k

= −1

3

∫
dK (∆µνkµkν)ϕ

s
kf0kf̃0k θ̂

=

(
J21D30 + J31G23

D20

+ J41

)
αs

0

λAs
02

θ̂ , (3.103)

to the diffusion 4-current,

(nµ)(1) =
〈
k〈µ〉
〉(1)

=

∫
dK k〈µ〉f

(1)
k

= β0

∫
dK k〈µ〉k〈ν〉ϕv

kf0kf̃0k ∇̂να0

=
D31

J31

β0α
v
0

λAv
01

∇̂µα0 , (3.104)

and to the shear-stress tensor,

(πµν)(1) =
〈
k〈µkν〉

〉(1)
=

∫
dK k〈µkν〉 f

(1)
k

= β2
0

∫
dK k〈µk ν〉k〈αk β〉ϕt

kf0kf̃0k σ̂αβ = 2J42
β2

0α
t
0

λAt
00

σ̂µν . (3.105)

Exercise 3.11: Using the orthogonality condition (3.85), prove Eqs. (3.103) – (3.105).

Therefore, as already mentioned at the beginning of this section, in the Chapman-
Enskog expansion relativistic Navier-Stokes theory appears as the first-order
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3.3 Israel-Stewart theory

truncation of an expansion in powers of gradients of temperature, chemical
potential, and velocity. With Kn = λ/L, θ̂ = Lθ, ∇̂µ = L∇µ, and σ̂µν = Lσµν , we
then identify by comparison with Eqs. (1.85), (1.86), and (1.87) the microscopic formulas
for bulk-viscosity, particle-diffusion, and shear-viscosity coefficients as

ζ = −
(
J21D30 + J31G23

D20

+ J41

)
αs

0

As
02

, (3.106)

κ =
D31

J31

β0α
v
0

Av
01

, (3.107)

η = J42
β2

0α
t
0

At
00

. (3.108)

We thus succeeded in our goal to derive expressions for the first-order transport
coefficients via an explicit calculation using an underlying microscopic theory.

3.3 Israel-Stewart theory
05/19/2022

In this section we explain Israel’s and Stewart’s 14-moment approximation as it
was originally proposed in Ref. [4]. This method is conceptually different from the
Chapman-Enskog theory and is not constructed from an expansion in a small parameter,
such as the Knudsen number. The main assumption made in this approach is that, since
a fluid-dynamical description requires only the conserved currents Nµ and T µν to specify
the state of the fluid, the single-particle distribution function should also be well described
by these fields. In practice, this is accomplished by expanding fk in terms of its moments
and truncate it in such a way that it only depends on Nµ and T µν . We shall describe
the details of this approach next.

3.3.1 14-moment approximation

The starting point is the Israel-Stewart Ansatz for the non-equilibrium single-particle
distribution function

fk = [exp (−yk) + a]−1 , (3.109)

where a = 1 (a = −1) for fermions (bosons) and a = 0 for a classical gas. In the traditional
Israel-Stewart approach, the parameter yk is expanded in momentum space around its
local-equilibrium value, y0k = α0 − β0uµk

µ, in terms of a series of (reducible) Lorentz-
tensors formed from the particle 4-momentum kµ, i.e., 1, kµ, kµkν , . . .. Therefore,

δyk ≡ yk − y0k = ε+ kµεµ + kµkνεµν + kµkνkλεµνλ + · · · . (3.110)

For small momenta, the non-equilibrium single-particle distribution function can be fur-
ther expanded around the local-equilibrium state

fk = f0k + f0kf̃0kδyk +O
(
δy2

k

)
. (3.111)
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3 Fluid Dynamics from Kinetic Theory: Traditional Approaches

In kinetic theory, the particle 4-current and the energy-momentum tensor are given by
Eqs. (3.4), (3.5). Substituting Eqs. (3.110), (3.111) into these equations, we express the
conserved currents in terms of the expansion coefficients εµ1···µm ,

Nµ = Iµ0 + εJµ0 + Jµν0 εν + Jµνλ0 ενλ + Jµνλρ0 ενλρ + · · · , (3.112)

T µν = Iµν0 + εJµν0 + Jµνλ0 ελ + Jµνλρ0 ελρ + Jµνλρσ0 ελρσ + · · · , (3.113)

where we introduced the tensors,

Iα1...αn
0 ≡

∫
dK kα1 . . . kαn f0k , (3.114)

Jα1...αn
0 ≡

∫
dK kα1 . . . kαnf0kf̃0k . (3.115)

The terms that are not multiplied by the expansion coefficients ε, εµ, and εµν are
identified as the equilibrium currents (1.21) and (1.23),

Nµ
ideal = Iµ0 , (3.116)

T µνideal = Iµν0 . (3.117)

Naturally, the remaining terms originate from the dissipative corrections to fk. The
tensors (3.114), (3.115) depend only on the thermal potential, α0, the inverse temperature,
β0, and the 4-velocity, uµ. Therefore, their tensor structure must be constructed solely
from combinations of uµ and the metric tensor, gµν . For the sake of convenience, we
tensor decompose the moments (3.114), (3.115) in terms of the fluid velocity uµ and the
projection operator ∆µν . One then obtains

Iµ0 = I10u
µ ,

Iµν0 = I20u
µuν − I21∆µν ,

Jµ0 = J10u
µ ,

Jµν0 = J20u
µuν − J21∆µν ,

Jµνλ0 = J30u
µuνuλ − 3J31u

(µ∆νλ) ,

Jµνλρ0 = J40u
µuνuλuρ − 6J41u

(µuν∆λρ) + 3J42∆(µν∆λρ) , (3.118)

where the thermodynamic integrals Inq and Jnq were defined in Eqs. (3.48) and (3.49).
Due to Eq. (3.50), Eqs. (3.116) and (3.117) reduce to what was derived in Chapter 1, Eqs.
(1.21) and (1.23). The parentheses around the Lorentz indices indicate symmetrization of
the tensor with respect to all indices (where only independent terms are counted), whereas
the prefactor counts the number of (independent) terms resulting from this symmetriza-
tion.

Exercise 3.12: Prove Eqs. (3.118).

74



3.3 Israel-Stewart theory

Obtaining the expansion coefficients εµ1···µm is not a trivial task. In the Chapman-
Enskog expansion, these were expressed in terms of gradients of α0, β0, and uµ using
perturbation theory, by assuming an expansion in powers of Knudsen number. Following
the developments made by Grad in the non-relativistic regime, Israel and Stewart pro-
posed a different approach. Instead of a gradient expansion, they suggested an ad hoc
truncation of the expansion (3.110) at second order in momentum, i.e., one only
keeps the tensors 1, kµ, and kµkν in the expansion,

δyk ≈ ε+ kµεµ + kµkνεµν . (3.119)

Without loss of generality, εµν can be assumed to be symmetric and traceless, i.e., εµν = ενµ

and εµµ = 0 (the symmetry under µ ↔ ν is obvious, since any antisymmetric part would
vanish in the contraction with kµkν , while the trace of εµν can always be absorbed in the
scalar coefficient ε). This leaves us with 14 unknown degrees of freedom in the expansion
coefficients ε, εµ, and εµν . We note that the equilibrium variables introduced in y0k, i.e.,
α0, β0, and uµ, are defined by the matching conditions (3.23) and the definition of the
local rest frame, e.g. the Landau choice (3.16).

3.3.2 Matching procedure

The 14 degrees of freedom of the truncated expansion can be uniquely related to the 14
components of the particle 4-current, Nµ, and the energy-momentum tensor, T µν , the so-
called matching procedure. This procedure will generate a single-particle distribution
function that is completely determined by the components of the conserved
currents. Israel and Stewart expected this to be a good approximation in the fluid-
dynamical regime, where Nµ and T µν are considered to be sufficient to describe the state
of the system.

The expansion coefficients can be solved using the constraints already derived in Eqs.
(3.16), (3.21), and (3.23), that is

∆µνN
ν = nµ , (3.120)

∆µν
αβT

αβ = πµν , (3.121)

−1

3
∆µν (T µν − T µνideal) = Π , (3.122)

uµ (Nµ −Nµ
ideal) = 0 , (3.123)

uν (T µν − T µνideal) = 0 . (3.124)

By solving this set of 14 linear equations, the expansion coefficients ε, εµ, and εµν can
be expressed in terms of the 14 (independent) variables α0, β0, Π, uµ, nµ, and πµν . The
relations (3.120) – (3.122) define the dissipative currents while the restrictions (3.123),
(3.124) come from the matching conditions and the Landau choice for the local rest
frame. If we were using the Eckart frame, for example, we would have to use, instead of
Eqs. (3.123) and (3.124),

Nµ −Nµ
ideal = 0 , (3.125)

uµuν (T µν − T µνideal) = 0 . (3.126)
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Combining Eqs. (3.116), (3.117), and (3.118), and truncating the expansion at terms
quadratic in 4-momentum, the conditions (3.120), (3.121), and (3.122) imply that

nµ = −J21∆µνεν − 2J31∆µνuλενλ , (3.127)

πµν = 2J42∆µν
λρε

λρ , (3.128)

Π = J21ε+ J31u
λελ +

(
J41 +

5

3
J42

)
uλuρελρ , (3.129)

where in the last equation we have used the fact that ελρ is traceless.

Exercise 3.13: Prove Eqs. (3.127) – (3.129).

The expressions (3.127) – (3.129) motivate the following Ansatz for the expansion co-
efficients,

ε = E0Π ,

ελ = D0Πuλ +D1nλ , (3.130)

ελρ = B0 (∆λρ − 3uλuρ) Π +B1u(λnρ) +B2πλρ .

Then, in order to determine the single-particle distribution function (3.111), we have to
compute the coefficients E0, D0, D1, B0, B1, and B2. This can be done by substituting
the Ansatz (3.130) into Eqs. (3.123), (3.124), (3.127), (3.128), and (3.129), leading to

J21D1 + J31B1 = −1 , (3.131)

2J42B2 = 1 , (3.132)

J21E0 + J31D0 − (3J41 + 5J42)B0 = 1 , (3.133)

J10E0 + J20D0 − 3 (J30 + J31)B0 = 0 , (3.134)

J31D1 + J41B1 = 0 , (3.135)

J20E0 + J30D0 − 3 (J40 + J41)B0 = 0 . (3.136)

Equations (3.131), (3.132), and (3.133) come directly from (3.127), (3.128), and (3.129),
respectively. Equations (3.134), (3.135), and (3.136) are consequences of Eqs. (3.123) and
(3.124). The solution of this set of equations is

E0

3B0

= m2 + 4
J31J30 − J41J20

D20

≡ −C1

D0

3B0

= −4
J31J20 − J41J10

D20

≡ −C2 ,

B0 = − 1

3C1J21 + 3C2J31 + 3J41 + 5J42

,

B1 =
J31

D31

,

D1 = − J41

D31

,

B2 =
1

2J42

. (3.137)
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In the first two equations we have used the identity (3.54).

Exercise 3.14: Prove Eqs. (3.131) – (3.137).

3.3.3 Moment equations

Now that the momentum distribution function is known, we can calculate the equations
of motion satisfied by the dissipative currents. Israel and Stewart derived the equations
of motion for Π, nµ, and πµν from the second moment of the Boltzmann equation
[2, 3, 4, 11]

∂µ
〈
kµkνkλ

〉
=

∫
dKkνkλC [f ] . (3.138)

In this case, the equations for Π, nµ, and πµν are obtained from the projections
uνuλ∂µ

〈
kµkνkλ

〉
, ∆α

λuν∂µ
〈
kµkνkλ

〉
, and ∆αβ

νλ∂µ
〈
kµkνkλ

〉
, respectively, together with the

14-moment approximation, Eqs. (3.111), (3.119), and (3.130). These equations determine
the time evolution of Π, nµ, and πµν through their (projected) comoving derivatives, DΠ,
Dn〈µ〉 ≡ ∆µ

νDn
ν , and Dπ〈µν〉 ≡ ∆µν

αβDπ
αβ, respectively.

However, extracting the equations of motion from the second moment of the Boltzmann
equation is just a choice. The 14-moment approximation itself does not specify which
moment of the Boltzmann equation should be chosen to close the conservation laws –
once the 14-moment approximation is employed any moment of the Boltzmann equation
will lead to a closed set of equations for the dissipative currents [12, 13]. This happens
because the distribution function itself is already a unique function of the fluid-dynamical
variables. In general, the form of the equations of motion will always be the same, but
the transport coefficients appearing in the final equations will depend on the choice
of the moment [13]. This happens because the 14-moment approximation is not a
truncation in Knudsen number and there is no moment of the Boltzmann equation that
carries the complete contribution to each term.

In the following, we will slightly deviate from Israel and Stewart and derive the equations
satisfied by Π, nµ, and πµν following Ref. [12], where it was shown that using the second
moment of the Boltzmann equation to obtain the equations of motion for the dissipative
currents introduces an unnecessary ambiguity in the derivation of fluid dynamics. This
happens because the exact equations of motion for Π, nµ, and πµν are known and can
be derived directly from the Boltzmann equation. Therefore, instead of choosing an
arbitrary moment of the Boltzmann equation to derive such equations, one should just
use the exact equations of motion for the dissipative currents.

Following Ref. [12], the comoving derivatives of Π, nµ, and πµν are calculated exactly
using

DΠ = −1

3
m2

∫
dK Dδfk , (3.139)

Dn〈µ〉 =

∫
dK k〈µ〉Dδfk , (3.140)

Dπ〈µν〉 =

∫
dK k〈µk ν〉Dδfk . (3.141)
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Note that in the first equation, we used the matching condition ε = ε0, such that 〈E2
k〉δ =

0. Then, replacing Dδfk by using the Boltzmann equation (3.1) in the form

Dδfk = −Df0k −
1

Ek

k〈µ〉∇µfk +
1

Ek

C[f ] , (3.142)

we obtain the exact equations

DΠ + C = −m
2

3
αs

0θ −
(

2

3
− m2

3

G20

D20

)
Πθ − m2

3

G20

D20

πµνσµν −
m2

3

G30

D20

∂µn
µ

+
m4

9

〈
E−2

k

〉
δ
θ +

m2

3

〈
E−2

k k〈µk ν〉
〉
δ
σµν +

m2

3
∇µ

〈
E−1

k k〈µ〉
〉
δ
, (3.143)

Dn〈µ〉 − Cµ = αv
0∇µα0 + nνωµν − nµθ −

3

5
nνσµν

+
β0J21

ε0 + P0

(
ΠDuµ −∇µΠ− πµνDuν + ∆µ

ν∇λπ
λν
)

− m2

3

〈
E−2

k k〈µ〉
〉
δ
θ −∆µ

λ∇ν

〈
E−1

k k〈λk ν〉
〉
δ
− 2m2

5

〈
E−2

k k〈ν〉
〉
δ
σµν

− m2

3
∇µ
〈
E−1

k

〉
δ
−
〈
E−2

k k〈µkνk λ〉
〉
δ
σλν , (3.144)

Dπ〈µν〉 − Cµν = αt
0σ

µν − 4

3
πµνθ − 10

7
πλ〈µσ

ν〉
λ + 2πλ〈µω

ν〉
λ +

6

5
Πσµν

− 4m2

7
∆µν
αβ

〈
E−2

k k〈λkα〉
〉
δ
σβλ −

2m4

15

〈
E−2

k

〉
δ
σµν

− 2m2

5
∆µν
αβ∇

α
〈
E−1

k k〈β〉
〉
δ
− m2

3

〈
E−2

k k〈µk ν〉
〉
δ
θ

−
〈
E−2

k k〈µkνkλk ρ〉
〉
δ
σλρ −∆µν

αβ∇λ

〈
E−1

k k〈αkβk λ〉
〉
δ
. (3.145)

The functions αi
0 were defined previously in the context of the Chapman-Enskog expansion

in Eqs. (3.81) – (3.83). We also used the equations of motion (3.46), (3.58), and (3.59)
(in their unscaled versions), as well as the thermodynamic identity (1.103). We also used
the relations

k〈µ〉k〈ν〉 = k〈µkν〉 +
1

3
∆µν

(
∆αβkαkβ

)
, (3.146)

k〈µ〉k〈ν〉k〈λ〉 = k〈µkνkλ〉 +
1

5

(
∆αβkαkβ

) (
∆µνk〈λ〉 + ∆µλk〈ν〉 + ∆νλk〈µ〉

)
, (3.147)

k〈µ〉k〈ν〉k〈λ〉k〈ρ〉 = k〈µkνkλkρ〉 +
1

7

(
∆αβkαkβ

) (
∆µνk〈λkρ〉 + ∆µλk〈νkρ〉 + ∆µρk〈νkλ〉

+∆νλk〈µkρ〉 + ∆νρk〈µkλ〉 + ∆λρk〈µkν〉
)

+
1

15

(
∆αβkαkβ

)2 (
∆µν∆λρ + ∆µλ∆νρ + ∆µρ∆νλ

)
, (3.148)

where k〈µkνk λ〉 = ∆µνλ
αβγ k

αkβkγ, k〈µkνkλk ρ〉 = ∆µνλρ
αβγδ k

αkβkγkδ, with the projection oper-
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ators ∆µνλ
αβγ and ∆µνλρ

αβγδ defined in App. 4.7. Finally, we also defined the collision integrals,

C =
m2

3

∫
dK E−1

k C [f ] , (3.149)

Cµ =

∫
dK E−1

k k〈µ〉C [f ] , (3.150)

Cµν =

∫
dK E−1

k k〈µkν〉C [f ] . (3.151)

Exercise 3.15: Prove Eqs. (3.143) – (3.145).

3.3.4 Calculation of the collision integrals

In Israel-Stewart theory, the distribution function was expanded in powers of δyk, retaining
only the first-order correction, cf. Eq. (3.111). For the sake of consistency, the same
approximation has to be made in the calculation of the collision terms (3.149) – (3.151).
In the end, this is equivalent to using the linearized collision operator in the integrals
above. Up to terms of order O (δy2

k), the collision terms reduce to

C =
m2

3ν

∫
dKdK ′dPdP ′

1

Ek

Wkk′→pp′f0kf0k′ f̃0pf̃0p′ (yp + yp′ − yk − yk′) , (3.152)

Cµ =
1

ν

∫
dKdK ′dPdP ′

k〈µ〉

Ek

Wkk′→pp′f0kf0k′ f̃0pf̃0p′ (yp + yp′ − yk − yk′) , (3.153)

Cµν =
1

ν

∫
dKdK ′dPdP ′

k〈µkν〉

Ek

Wkk′→pp′f0kf0k′ f̃0pf̃0p′ (yp + yp′ − yk − yk′) . (3.154)

Here, we have written yk instead of δyk, since y0k = α0 − β0Ek consists of two collision
invariants (1 and Ek), and consequently y0p + y0p′ − y0k − y0k′ = 0.

Exercise 3.16: Prove Eqs. (3.152) – (3.154).

Inserting the moment expansion (3.119) of δyk into the collision integrals, they further
simplify to

C = −4

9
m2As

02uαuβε
αβ , (3.155)

Cµ = −2
Av

01

β0

uα∆µ
βε
αβ , (3.156)

Cµν = −A
t
00

β2
0

∆µν
αβε

αβ , (3.157)

where we have used the definition (3.93) of the matrix elements Aimn, i =s,v,t. We note
that the only term from the moment expansion that contributes to the collision integral
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is kαkβε
αβ. The remaining two terms, ε and εµk

µ, are proportional to collision invariants,
and consequently, make the collision integrals vanish. Furthermore, we have made use of
the orthogonality relation (3.87) and of the tracelessness of εαβ.

Exercise 3.17: Prove Eqs. (3.155) – (3.157).

Then, using Eq. (3.130), which expresses the expansion coefficient εµν in terms of Π,
nµ, and πµν , we obtain the final expression for the coefficients C, Cµ, and Cµν in the
14-moment approximation

C =
4

3
m2B0As

02Π , (3.158)

Cµ = −B1
Av

01

β0

nµ , (3.159)

Cµν = −B2
At

00

β2
0

πµν . (3.160)

The thermodynamic functions B0, B1, and B2 were calculated in Eq. (3.137) while the
matrices Ainm are defined in Eq. (3.93). The dependence of the collision integrals on the
particle cross sections come exclusively from Ainm.

Exercise 3.18: Prove Eqs. (3.158) – (3.160).

In addition, the following terms appearing in the exact equations of motion can be
computed using Eqs. (3.85), (3.119), and (3.130) as〈

E−1
k

〉
δ

= [J−1,0E0 + J00D0 − 3 (J11 + J10)B0] Π ≡ γΠ
1 Π , (3.161)〈

E−2
k

〉
δ

= [J−2,0E0 + J−1,0D0 − 3 (J01 + J00)B0] Π ≡ γΠ
2 Π , (3.162)〈

E−1
k k〈µ〉

〉
δ

= − (J11D1 + J21B1)nµ ≡ γn1n
µ , (3.163)〈

E−2
k k〈µ〉

〉
δ

= − (J01D1 + J11B1)nµ ≡ γn2n
µ , (3.164)〈

E−1
k k〈µk ν〉

〉
δ

=
J32

J42

πµν ≡ γπ1 π
µν , (3.165)〈

E−2
k k〈µk ν〉

〉
δ

=
J22

J42

πµν ≡ γπ2 π
µν , (3.166)〈

E−2
k k〈µkνk λ〉

〉
δ

= 0 ,
〈
E−2

k k〈µkνkλk ρ〉
〉
δ

= 0 , (3.167)

where the coefficients γΠ
1 , γΠ

2 , γn1 , γn2 , γπ1 , and γπ2 are defined by the right-hand sides of
these equations.

Exercise 3.19: Prove Eqs. (3.161) – (3.167).
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3.3.5 Hydrodynamic equations of motion

Implementing the simplifications (3.158) – (3.167) on account of the 14-moment approx-
imation, the system of equations (3.143) – (3.145) will be closed in terms of the fluid-
dynamical variables. Then, we obtain the following equations of motion,

τΠDΠ = −Π− ζθ − δΠΠΠθ + λΠππ
µνσµν − `Πn∇µn

µ − τΠnn
µDuµ − λΠnn

µ∇µα0 ,
(3.168)

τnDn
〈µ〉 = −nµ + κ∇µα0 − τnnνωνµ − δnnnµθ − λnnnνσµν + `nπ∆µν∇λπ

λ
ν − τnππµνDuν

− λnππµν∇να0 − `nΠ∇µΠ + τnΠΠDuµ + λnΠΠ∇µα0 , (3.169)

τπDπ
〈µν〉 = −πµν + 2ησµν + 2τππ

〈µ
α ω

ν〉α − δπππµνθ − τπππ〈µα σ ν〉α

− τπnn〈µDuν〉 + `πn∇〈µnν〉 + λπnn
〈µ∇ν〉α0 + λπΠΠσµν , (3.170)

where we neglected terms of third order in dissipative currents or gradients. In total, these
equations contain 25 transport coefficients. The coefficients of bulk viscosity, particle
diffusion, and shear viscosity are identified as

ζ =
αs

0

4B0As
02

, κ =
β0α

v
0

B1Av
01

, η =
β2

0α
t
0

2B2At
00

. (3.171)

Note that these expressions for ζ, κ, and η are the same as those obtained in Chapman-
Enskog theory, Eqs. (3.106) – (3.108), when the simplest truncation scheme possible is
employed, N s = 2, Nv = 1, and N t = 0. (The proof that the bulk-viscosity coefficient
agrees with Eq. (3.106) utilizes the relation (3.54).)

The relaxation times, which have no analogue in Navier-Stokes theory, are given by

τΠ =
3

4m2B0As
02

, τn =
β0

B1Av
01

, τπ =
β2

0

B2At
00

. (3.172)

Note that the ratios of the relaxation times to their corresponding viscosity and diffusion
coefficients are actually thermodynamic functions and independent of the collision term,

τΠ

ζ
=

3

m2αs
0

,
τn
κ

=
1

αv
0

,
τπ
η

=
2

αt
0

. (3.173)

In particular, in the classical and massless limit τπ/η = 1/(β0I32) = 5/(ε0 + P0). This
value respects the asymptotic causality condition discussed in Chapter 2.

The remaining transport coefficients related to the bulk-viscous pressure are

δΠΠ

τΠ

=
2

3
− m2

3

G20

D20

− m4

9
γΠ

2 ,
λΠπ

τΠ

=
m2

3

(
γπ2 −

G20

D20

)
,

λΠn

τΠ

= −m
2

3

(
∂γn1
∂α0

+ h−1
0

∂γn1
∂β0

)
,

`Πn

τΠ

=
m2

3

(
G30

D20

− γn1
)
,

τΠn

τΠ

= −m
2

3

(
G30

D20

− β0
∂γn1
∂β0

)
, (3.174)
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while those related to the particle-diffusion current are

δnn
τn

= 1 +
m2

3
γn2 ,

λnn
τn

=
3

5
+

2

5
m2γn2 ,

`nπ
τn

=
β0J21

ε0 + P0

− γπ1 ,
τnπ
τn

= β0
J21

ε0 + P0

− β0
∂γπ1
∂β0

,

λnπ
τn

=
∂γπ1
∂α0

+ h−1
0

∂γπ1
∂β0

,
`nΠ

τn
=

β0J21

ε0 + P0

+
m2

3
γΠ

1 ,

τnΠ

τn
=

β0J21

ε0 + P0

+
m2

3
β0
∂γΠ

1

∂β0

,
λnΠ

τn
= −m

2

3

(
∂γΠ

1

∂α0

+ h−1
0

∂γΠ
1

∂β0

)
, (3.175)

and, finally, those related to the shear-stress tensor are

δππ
τπ

=
4

3
+
m2

3
γπ2 ,

τππ
τπ

=
10

7
+

4

7
m2γπ2 ,

τπn
τπ

= −2

5
m2β0

∂γn1
∂β0

,
`πn
τπ

= −2

5
m2γn1 ,

λπn
τπ

= −2

5
m2

(
∂γn1
∂α0

+ h−1
0

∂γn1
∂β0

)
,

λπΠ

τπ
=

6

5
− 2

15
m4γΠ

2 . (3.176)

Exercise 3.20: Prove Eqs. (3.168) – (3.176).

We note that equations (3.168) – (3.170) are not identical to the original equations
obtained by Israel and Stewart in Ref. [4]. The following terms did not appear in the
original Israel-Stewart equations: in the equation for the bulk-viscous pressure the terms
proportional to Πθ, πµνσµν , and nµ∇µα0; in the equation for the diffusion 4-current the
terms proportional to nµθ, nνσµν , πµν∇να0, and Π∇µα0; and in the equation for the shear-

stress tensor the terms proportional to πµνθ, π
〈µ
α σ ν〉α, n〈µ∇ν〉α0, and Πσµν . These missing

terms made some believe that the formalism proposed by Israel and Stewart to derive fluid
dynamics necessarily led to incomplete equations of motion. As we demonstrated in this
chapter, this is certainly not the case. The issue was that such terms were originally
dropped in their original work because they were considered to be unimportant for ap-
plications to cosmology, where the expansion rate of the fluid is usually quite small and
the shear tensor is zero. Therefore, the disappearance of such terms is only a reflection
of the power-counting scheme originally adopted by Israel-Stewart, it is not a permanent
feature of the formalism.

However, for the purposes of describing the quark-gluon plasma produced in heavy-ion
collisions, such a power-counting scheme is simply not sufficient, and the terms that were
originally dropped can be of relevance to the description of such a rapidly expanding
system. The first to note that Israel-Stewart theory was not incomplete were the authors
of Refs. [14, 15, 16], who actually wrote down the complete equations that follow from
Israel-Stewart’s derivation procedure, i.e., Eqs. (3.168) – (3.170).
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Furthermore, we note that the transport coefficients derived in this section are slightly
different from those derived by Israel and Stewart in Ref. [4]. The reason behind this is
well known: we did not use the second moment of the Boltzmann equation to derive the
equations of motion for the dissipative currents using the 14-moment approximation – we
instead used the exact equation of motion for the dissipative currents. The moment of
the Boltzmann equation employed to derive the equations of motion does not change the
form of the equations of motion, but does affect the microscopic expressions obtained for
the transport coefficients. We remark that this is basically a relativistic effect and, in the
non-relativistic (or low-temperature) limit, the set of transport coefficients will have the
same values regardless of the moment employed.

In contrast to Chapman-Enskog theory, Israel’s and Stewart’s framework allows for a
rather simple derivation of fluid dynamics. This derivation leads to a fairly accurate theory
of fluid dynamics for dilute gases, which takes into account the transient dynamics of
the dissipative currents and includes several higher-order terms. Following the arguments
constructed in Chapter 2, linearized Israel-Stewart theory can be shown to be stable under
perturbations and also to respect causality, depending on the values taken for η/τπ, κ/τn,
and ζ/τΠ. The microscopic expressions derived in this section for the viscosity coefficients
and relaxation times are consistent with the causality and stability conditions
obtained in Chapter 2. Naturally, improvements to this formalism are still required, as
will be discussed in detail in the forthcoming chapters.

3.4 Summary

In this chapter we have discussed in detail the derivation of relativistic dissipative
fluid dynamics from kinetic theory following the two most traditional approaches:
the Chapman-Enskog expansion and the 14-moment approximation, as originally
proposed by Israel and Stewart.

In Sec. 3.1 we showed how the fluid-dynamical degrees of freedom can be matched to
moments of the single-particle momentum distribution function. This is the first step
required to derive fluid dynamics from the Boltzmann equation and this section’s results
will also be employed in the following chapter.

In Sec. 3.2 we discussed the Chapman-Enskog expansion. In this scheme, an asymp-
totic solution of the Boltzmann is constructed using perturbation theory, by expanding
the single-particle distribution function in powers of the Knudsen number. This re-
sults in a gradient expansion, in which all moments of the distribution function depend
solely on the five primary fluid-dynamical variables and their gradients. The cor-
rections to the local-equilibrium distribution function are then systematically arranged in
terms of an expansion in powers of the Knudsen number. We showed in this section that
the zeroth-order truncation of this expansion leads to ideal fluid dynamics and the
first-order truncation to Navier-Stokes theory. We further obtained the micro-
scopic expressions for the viscosity and diffusion coefficients. Keeping second-
and higher-order terms one would obtain the Burnett and super-Burnett equations, but
these higher-order solutions were not explicitly calculated here.

In Sec. 3.3 we discussed Israel’s and Stewart’s derivation of relativistic fluid
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dynamics. This procedure is based on a truncation of the moment expansion of the
single-particle distribution function. There, the distribution function is expressed solely
in terms of 14 degrees of freedom, which can be matched to the 14 independent
components of the conserved currents. This truncated version of the single-particle
distribution function, the so-called 14-moment approximation, is substituted into the
exact equations of motion for the dissipative currents, leading to a closed set of dy-
namical equations for these fields. The novel equations of motion obtained satisfy the
causality condition obtained in Chapter 2 and, therefore, are stable. In the next chapters,
we shall see how the method of moments can be improved, in order to derive even more
precise fluid-dynamical equations of motion.
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4 Method of Moments

The two widespread methods to derive relativistic fluid dynamics from the Boltzmann
equation, the Chapman-Enskog expansion [1] and the 14-moment approximation [2, 3, 4],
both described in the previous chapter, have flaws. The relativistic Chapman-Enskog
expansion is essentially based on the gradient expansion and as such does not feature
transient effects, which allow to restore causality and stability. It thus leads to fluid-
dynamical equations of motion that are acausal and intrinsically unstable [5] and,
consequently, it should not be applied to derive the equations of relativistic fluid dynamics
from kinetic theory. The method of moments [2, 3, 4, 6] is in principle free of such
problems and leads to transient fluid-dynamical equations that can be constructed to be
causal and stable [7, 8, 9, 10, 11], as shown in Chapter 2. However, in the form presented
in the previous chapter it still features an ambiguity as to how to close the system of fluid-
dynamical equations of motion. In this chapter we will discuss the necessary prerequisites
to resolve this problem.

The method of moments is generally considered the method of choice for deriving the
fluid-dynamical equations of motion from the Boltzmann equation. This approach was
first formulated consistently by H. Grad [12] for non-relativistic systems and consists of
expanding the non-equilibrium correction to the single-particle distribution function in
terms of a complete set of Hermite polynomials [13]. The generalization of Grad’s
method of moments to relativistic systems is, nevertheless, not trivial and has been pur-
sued by several authors [14, 15, 16, 17, 18, 19]. The main challenge is to find a suitable set
of orthogonal polynomials which could replace the Hermite polynomials in a rela-
tivistic formulation [3, 6]. This issue was circumvented by Israel and Stewart by simply
expanding the non-equilibrium correction to the single-particle distribution function in a
Taylor series in 4-momentum. The main disadvantage of this approach is that, since
the expansion is not realized in terms of an orthogonal basis, the expansion coefficients
cannot be determined in terms of moments of the single-particle distribution function.
Israel and Stewart then introduced another approximation, the so-called 14-moment
approximation [4], already discussed in Sec. 3.3. In this case, the Taylor expansion
in momentum is truncated at second order, leaving only 14 expansion coefficients to be
determined. Israel and Stewart then introduced a set of 14 constraints which allowed to
express the expansion coefficients in terms of the conserved currents, Nµ and T µν – the
so-called matching procedure.

A more reliable relativistic formulation of the method of moments, which ex-
pands the single-particle distribution function in momentum using an orthogonal and
complete basis, was formulated in Ref. [20]. The main goal of this chapter is to describe
this expansion and to derive the equations of motion satisfied by the corresponding expan-
sion coefficients, the so-called irreducible moments, which turn out to be moments
of the deviation of the single-particle distribution function from a chosen ref-

87



4 Method of Moments

erence state. As we shall discuss in Chapter 5, such a generalization of the method
of moments will be essential in understanding how relativistic fluid dynamics actually
emerges from the relativistic Boltzmann equation, what is its domain of applicability,
and how the equations of motion can be systematically improved. In this chapter, the
reference state is assumed to be in local thermodynamical equilibrium, described by the
single-particle distribution function (3.60). A generalization to a different reference state
(featuring an anisotropy in momentum space) was explored in Ref. [21].

This chapter is organized as follows. In Sec. 4.1 we demonstrate how to expand the
single-particle distribution function in terms of a complete, orthogonal basis in mo-
mentum space. In contrast to Israel’s and Stewart’s non-orthogonal basis 1, kµ, kµkν , . . .,
our approach uses irreducible tensors in 4-momentum kµ, and is thus orthogonal. The
coefficients of the irreducible tensors in the expansion of the single-particle distribution
function are orthogonal polynomials in the rest-frame energy, multiplied by the
above mentioned irreducible moments. Section 4.2 derives an infinite set of equations for
these moments, which is still completely equivalent to the Boltzmann equation. Section
4.3 explicitly calculates the moments of the collision term, which appear in the equations
of motion for the irreducible moments. In Sec. 4.4 we summarize this chapter. Several
mathematical details are delegated to a set of appendices.

4.1 Moment expansion

In principle, the momentum dependence of the non-equilibrium component of fk,
δfk ≡ fk− f0k, should be obtained by solving the relativistic Boltzmann equation,
which in general poses a very complicated task. In this context, the method of moments
can be a convenient tool, since it allows us to obtain an approximate expression for
δfk, which is able to capture some features of solutions of the Boltzmann equation. In this
section we explain and develop the moment expansion of the single-particle distribution
function.

It is convenient to factorize the local-equilibrium distribution function f0k from fk in
the following way

fk = f0k + δfk ≡ f0k (1 + Gkφk) . (4.1)

Above, we introduced Gk as an arbitrary function of Ek ≡ uµk
µ, and φk as an arbitrary

function of the space-time coordinates xµ and the on-shell 4-momentum kµ = (k0,k)T ,
k0 =

√
k2 +m2.

The next step is to expand φk in terms of a complete basis of tensors formed of
kµ. One choice is to follow the approach proposed by Israel and Stewart [4] and expand
φk using the following basis,

1 , kµ , kµkν , kµkνkλ , . . . . (4.2)

In this case, the formal expression for φk becomes

φk = ε+ εµk
µ + εµνk

µkν +O
(
kµkνkλ

)
, (4.3)

where the expansion coefficients εµ1···µm carry all the space-time dependence of φk.
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4.1 Moment expansion

The main disadvantage of the moment expansion proposed by Israel and Stewart is
that the expansion coefficients are simply unknown and can only be extracted approxi-
mately. This happens because the basis (4.2) is not orthogonal. In their original work,
Israel and Stewart overcame this problem by truncating the expansion at second order in
momentum and extracting the coefficients of the truncated expansion by matching them
to certain moments of the single-particle distribution function. However, the coefficients
extracted from such a matching procedure are not unique and can change according to
the order in which the expansion is truncated.

This unpleasant aspect of Israel-Stewart theory can be easily avoided by using an or-
thogonal basis for the expansion. Here, we follow the approach developed in Ref. [20]
and expand φk using as a basis the irreducible tensors,

1 , k〈µ〉 , k〈µk ν〉 , k〈µkνk λ〉 , . . . , (4.4)

and orthogonal polynomials in Ek,

P
(`)
kn =

n∑
r=0

a(`)
nrE

r
k . (4.5)

Note that, in the local rest frame, the irreducible tensors (4.4) are (certain) polynomials
formed of powers of the components of 3-momentum k, while the orthogonal polyno-
mials (4.5) are polynomials in on-shell energy k0 =

√
k2 +m2. The term “irreducible”

refers to the fact that the tensors are irreducible with respect to the group of Lorentz
transformations which leave the fluid velocity invariant, Λµ

νu
ν ≡ uµ, the so-called little

group associated with uµ. In the local rest frame, these are spatial rotations.
The irreducible tensors form a complete and orthogonal set and are defined by

using the symmetrized and, for m > 1 traceless, projection orthogonal to uµ of tensors
constructed from kµ. That is,

k〈µ1 · · · k µm〉 ≡ ∆µ1···µm
ν1···νm k

ν1 · · · kνm , (4.6)

where the projectors ∆µ1···µm
ν1···νm are constructed in App. 4.5, Eq. (4.49), see also Refs. [6, 22].

Naturally, these projectors are orthogonal to the fluid 4-velocity.
The irreducible tensors (4.4) satisfy an orthogonality condition,∫
dK F(Ek) k〈µ1 · · · k µm〉k〈ν1 · · · kνn〉 =

m! δmn
(2m+ 1)!!

∆µ1···µm
ν1···νm

∫
dK F(Ek)

(
∆αβkαkβ

)m
,

(4.7)
for an arbitrary function F (Ek), which depends only on Ek = kµuµ, for the proof see App.
4.7. Likewise, the orthogonal polynomials (4.5) fulfill an orthogonality condition,∫

dK ω(`) P
(`)
kmP

(`)
kn = δmn , (4.8)

with the measure ω(`) being given by

ω(`) ≡ W (`)

(2`+ 1)!!

(
∆αβkαkβ

)` Gkf0k , (4.9)
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cf. App. 4.8 for further details.
We note that the basis constructed from irreducible tensors and orthogonal polynomials

is completely equivalent to the basis used by Israel and Stewart, as long as Gk = f̃0k.
However, the fact that it is orthogonal will make it more convenient to use. Next, we
explain how the orthogonality relations (4.7), (4.8) satisfied by the basis elements allow
to calculate the expansion coefficients.

Using the basis introduced in Eqs. (4.4) and (4.5), the quantity φk defined in Eq. (4.1)
is expanded as

φk =
∞∑
`=0

N∑̀
n=0

c〈µ1···µ`〉n P
(`)
kn k〈µ1 · · · kµ`〉 . (4.10)

The expansion coefficients c
〈µ1···µ`〉
n can be obtained by multiplying Eq. (4.10) by the

corresponding basis element, Gkf0kP
(`)
kn k

〈µ1 · · · k µ`〉, and integrating over momentum, dK.
Together with the definition (4.1) of δfk, the orthogonality conditions (4.7), (4.8) then
imply that

c〈µ1···µ`〉n =
W (`)

`!

∫
dK P

(`)
kn k〈µ1 · · · k µ`〉 δfk . (4.11)

Exercise 4.1: Prove Eq. (4.11).

Plugging Eq. (4.11) into Eq. (4.10) and the result into Eq. (4.1), using Eq. (4.5) the
full non-equilibrium single-particle distribution function can be expressed in the following
way,

fk = f0k(1 + Gkφk) , (4.12)

φk =
∞∑
`=0

N∑̀
n=0

H(`)
knρ

µ1···µ`
n k〈µ1 · · · kµ`〉 , (4.13)

where we introduced the function

H(`)
kn ≡

W (`)

`!

N∑̀
m=n

a(`)
mnP

(`)
km , (4.14)

and the irreducible moments ρµ1···µ`n of δfk,

ρµ1···µ`n ≡
∫
dK En

k k
〈µ1 · · · k µ`〉 δfk ≡

〈
En

k k
〈µ1 · · · k µ`〉

〉
δ
. (4.15)

On the right-hand side, we made contact to the notation (3.27) introduced in Chapter 3.

Exercise 4.2: Prove Eqs. (4.12) and (4.13).
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We remark that our choice of matching conditions (3.23) and the Landau-frame
definition (3.16) of the fluid velocity [23] imply that the following irreducible moments
vanish

ρ1 = ρ2 = ρµ1 = 0 . (4.16)

The vanishing of the two scalar moments, ρ1 and ρ2, define the temperature and chem-
ical potential of the fictitious local-equilibrium state characterized by the single-
particle distribution function f0k. The rank-1 moment ρµ1 corresponds to heat flow,
which vanishes by definition in the Landau frame.

Note that, so far, the function Gk was assumed to be independent of the index `.
This was done just for the sake of simplicity and, in principle, nothing would prevent
us from introducing a function G(`)

k , if this provides a more useful prefactor in Eq. (4.1).

The arbitrary function G(`)
k would determine the overall behavior of the polynomial basis

employed to expand φk. Setting G(`)
k = f̃0k corresponds to employing the same basis used

by Israel and Stewart, which, once truncated, is a good approximation to describe the
function for small values of β0Ek (as long as there are no singularities). This basis is
sufficient to derive fluid dynamics and was used for this purpose in previous work [20].

On the other hand, one can also set G(`)
k = f̃0k/ (1 + β0Ek)`, which, at large β0Ek, is

equivalent to the basis 1/Ek, 1/E2
k, 1/E3

k, . . ., while, at small β0Ek, is equivalent to the
usual basis 1, Ek, E2

k, E3
k, . . .. This (truncated) basis is expected to be viable when β0Ek

is large and should provide a better estimate of the momentum dependence of φk. In
summary, with a reasonable choice of G(`)

k one can describe the single-particle distribution
function for several domains of β0Ek.

For the particular choice Gk = f̃0k one can easily show that, substituting Eqs. (4.12)
and (4.14) into Eq. (4.15) and using Eq. (4.5), the orthogonality condition (4.7), as well
as the definition of the auxiliary thermodynamic integrals (4.31), all irreducible moments
are linearly related to each other (for more details see, Eq. (72) of Ref. [24]),

ρµ1···µ`i ≡ (−1)` `!

N∑̀
n=0

ρµ1···µ`n γ
(`)
in , (4.17)

where

γ
(`)
in =

W (`)

`!

N∑̀
m=n

m∑
r=0

a(`)
mna

(`)
mrJi+r+2`,` . (4.18)

Note that these relations are also valid for moments with negative i, hence it is possible
to express the irreducible moments with negative powers of Ek in terms of the ones with
positive i, for details see Eq. (65) of Ref. [20].

The moment expansion described in this section is a very powerful tool, with applica-
tions to all methods that derive fluid dynamics from the relativistic Boltzmann equation.

Exercise 4.3: Prove Eq. (4.17).
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4 Method of Moments

4.2 Equations of motion for the irreducible moments

The time-evolution equations for the irreducible moments ρµ1···µ`r can be obtained
directly from the Boltzmann equation by applying the comoving derivative to the defini-
tion (4.15), together with the symmetrized traceless projection,

ρ̇〈µ1···µ`〉r = ∆µ1···µ`
ν1···ν`

d

dτ

∫
dKEr

kk
〈ν1 · · · k ν`〉δfk , (4.19)

where Ȧ ≡ uµ∂µA ≡ DA ≡ dA/dτ and ρ̇
〈µ1···µ`〉
r ≡ ∆µ1···µ`

ν1···ν` ρ̇
ν1···ν`
r . Using the Boltzmann

equation (3.1) in the form (3.142),

δḟk = −ḟ0k − E−1
k kν∇νf0k − E−1

k kν∇νδfk + E−1
k C [f ] , (4.20)

where ∇µ ≡ ∆ν
µ∂ν , and substituting this expression into Eq. (4.19), one can obtain the

exact equations for the comoving derivatives of ρµ1···µ`r .
Using the power-counting scheme that will be developed in Sec. 5.1, we can show

that, in order to derive the equations of motion for relativistic fluid dynamics, it is suf-
ficient to know the time-evolution equations for the moments (4.15) up to rank two,
i.e., for ρr, ρ

µ
r , and ρµνr . Similar equations can also be derived for higher-rank irreducible

moments, if needed. Thus, using Eqs. (4.19) and (4.20), we obtain after some lengthy
calculation

ρ̇r − Cr−1 = α(0)
r θ − G2r

D20

Πθ +
G2r

D20

πµνσµν +
G3r

D20

∂µn
µ + (r − 1) ρµνr−2σµν

+ rρµr−1u̇µ −∇µρ
µ
r−1 −

1

3

[
(r + 2) ρr − (r − 1)m2ρr−2

]
θ , (4.21)

ρ̇〈µ〉r − C
〈µ〉
r−1 = α(1)

r Iµ + ρνrω
µ
ν +

1

3

[
(r − 1)m2ρµr−2 − (r + 3) ρµr

]
θ −∆µ

λ∇νρ
λν
r−1 + rρµνr−1u̇ν

+
1

5

[
(2r − 2)m2ρνr−2 − (2r + 3) ρνr

]
σµν +

1

3

[
m2rρr−1 − (r + 3) ρr+1

]
u̇µ

+
β0Jr+2,1

ε0 + P0

(
Πu̇µ −∇µΠ + ∆µ

ν∂λπ
λν
)
− 1

3
∇µ
(
m2ρr−1 − ρr+1

)
+ (r − 1) ρµνλr−2σλν , (4.22)

ρ̇〈µν〉r − C〈µν〉r−1 = 2α(2)
r σµν − 2

7

[
(2r + 5) ρλ〈µr − 2m2 (r − 1) ρ

λ〈µ
r−2

]
σ
ν〉
λ + 2ρλ〈µr ω

ν〉
λ

+
2

15

[
(r + 4) ρr+2 − (2r + 3)m2ρr + (r − 1)m4ρr−2

]
σµν

+
2

5
∇〈µ

(
ρ
ν〉
r+1 −m2ρ

ν〉
r−1

)
− 2

5

[
(r + 5) ρ

〈µ
r+1 −m2rρ

〈µ
r−1

]
u̇ν〉

− 1

3

[
(r + 4) ρµνr −m2 (r − 1) ρµνr−2

]
θ

+ (r − 1) ρµνλρr−2 σλρ −∆µν
αβ∇λρ

αβλ
r−1 + rρµνλr−1u̇λ , (4.23)

where we introduced the generalized irreducible collision terms

C〈µ1···µ`〉r =

∫
dKEr

kk
〈µ1 · · · k µ`〉C [f ] . (4.24)
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4.2 Equations of motion for the irreducible moments

We further used the definitions of the shear tensor σµν ≡ ∇〈µuν〉, the expansion scalar
θ ≡ ∇µu

µ, and the vorticity tensor ωµν ≡ (∇µuν −∇νuµ) /2 and we introduced Iµ ≡
∇µα0. All derivatives of α0 and β0 that appeared during the derivation of the above
equations were replaced using the exact equations obtained from the conservation laws
of particle number, energy, and momentum,

α̇0 =
1

D20

{−J30 (n0θ + ∂µn
µ) + J20 [(ε0 + P0 + Π) θ − πµνσµν ]} , (4.25)

β̇0 =
1

D20

{−J20 (n0θ + ∂µn
µ) + J10 [(ε0 + P0 + Π) θ − πµνσµν ]} , (4.26)

u̇µ =
1

ε0 + P0

(
∇µP0 − Πu̇µ +∇µΠ−∆µ

α∂βπ
αβ
)
, (4.27)

cf. Eqs. (3.46), (3.58), (3.59). The coefficients α
(0)
r , α

(1)
r , and α

(2)
r are functions of temper-

ature and chemical potential and have the general form

α(0)
r = (1− r) Ir1 − Ir0 −

1

D20

[G2r (ε0 + P0)−G3rn0] , (4.28)

α(1)
r = Jr+1,1 − h−1

0 Jr+2,1 , (4.29)

α(2)
r = Ir+2,1 + (r − 1) Ir+2,2 , (4.30)

where we defined the thermodynamic functions

Inq (α0, β0) =
1

(2q + 1)!!

〈
En−2q

k

(
−∆αβkαkβ

)q〉
0
, Jnq =

∂Inq
∂α0

∣∣∣∣
β0

, (4.31)

Gnm = Jn0Jm0 − Jn−1,0Jm+1,0 , Dnq = Jn+1,qJn−1,q − J2
nq , (4.32)

cf. also Eqs. (3.48), (3.49), (3.55).

Exercise 4.4: Prove Eqs. (4.21) – (4.23).

(Warning: This proof is quite lengthy. Try this only when you have sufficient patience
and time.)

Using the matching conditions (4.16), the dissipative quantities appearing in the con-
servation laws can be (exactly) identified with the moments

ρ0 = − 3

m2
Π , ρµ0 = nµ , ρµν0 = πµν , (4.33)

cf. Eqs. (3.26), (3.28) in Chapter 3. We note that the derivation of the equations of
motion for the irreducible moments is independent of the form of the expansion of the
single-particle distribution introduced in the previous section.
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4 Method of Moments

4.3 Collision term

In this section, we compute the collision integrals (4.24), expressing them in terms of
the irreducible moments. This then formally closes the set of moment equations. We
shall separate the collision term into two different components: one being linear in the
non-equilibrium corrections φp and the remaining being nonlinear in these functions. It
is obvious that the first term will be linear in the irreducible moments, while the second
one is nonlinear.

The first step is to express the collision term as a functional of φp, which was introduced
in Eq. (4.1) as (we take Gk ≡ f̃0k)

δfp = fp − f0p = f0pf̃0pφp . (4.34)

Using this definition, it is straightforward to demonstrate that

fpfp′ = f0pf0p′

(
1 + f̃0p′φp′ + f̃0pφp + f̃0pf̃0p′φpφp′

)
, (4.35)

f̃pf̃p′ = f̃0pf̃0p′
(
1− af0p′φp′ − af0pφp + a2f0pf0p′φpφp′

)
. (4.36)

The terms linear in φk will be collected into the linear collision term and computed
in the following, while the higher-order terms constitute the nonlinear collision term,
respectively. The calculation of the latter can be found (in the classical (Boltzmann)
limit) in Ref. [24].

Substituting Eqs. (4.35) and (4.36) into Eq. (4.24), and keeping only terms that are
linear in φk, one can derive the linearized collision term, L [φ], defined as C [f ] =
L [φ] +O (φ2). Explicitly, one obtains

L [φ] =
1

ν

∫
dK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′ (φp + φp′ − φk − φk′) . (4.37)

Exercise 4.5: Prove Eq. (4.37).

(Hint: Use C [f0] = 0 and the equality f0pf0p′ f̃0kf̃0k′ = f0kf0k′ f̃0pf̃0p′ .)

Inserting Eq. (4.37) into the expression for the irreducible collision term (4.24), we
obtain the linearized collision integral

L
〈µ1···µ`〉
r−1 ≡

∫
dK Er−1

k k〈µ1 · · · k µ`〉L [φ]

=
1

ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′E

r−1
k k〈µ1 · · · k µ`〉 (φp + φp′ − φk − φk′) .

(4.38)

The next step is to substitute the moment expansion (4.13) for φk into Eq. (4.38), ex-
pressing it as a linear combination of the irreducible moments,

L
〈µ1···µ`〉
r−1 = −

∞∑
m=0

Nm∑
n=0

(Arn)µ1···µ`ν1···νm ρ
ν1···νm
n , (4.39)

94



4.3 Collision term

where we defined the tensor

(Arn)µ1···µ`ν1···νm ≡
1

ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′E

r−1
k k〈µ1 · · · k µ`〉

×
(
H(m)
nk k〈ν1 · · · kνm〉 +H(m)

nk′ k
′
〈ν1 · · · k

′
νm〉 −H

(m)
np p〈ν1 · · · pνm〉 −H

(m)
np′ p

′
〈ν1 · · · p

′
νm〉

)
.

(4.40)

Equation (4.39) looks like different tensor components of the irreducible moments con-
tribute to a given tensor component of the collision term on the left-hand side. In fact,
however, we will now show that the tensor components on both sides of this equation are
the same, cf. Eq. (4.47).

The integral (Arn)µ1···µ`ν1···νm is a tensor of rankm+`, which is symmetric under permutations
of µ-type and ν-type indices, and which depends only on the equilibrium distribution
function. The latter contains only one type of 4-vector, the fluid velocity uµ. Therefore,
(Arn)µ1···µ`ν1···νm must be constructed from tensor structures made of uµ and the metric tensor
gµν . Also, (Arn)µ1···µ`ν1···νm was constructed to be orthogonal to uµ and to satisfy the following
property,

∆α1···α`
µ1···µ`∆

ν1···νm
β1···βm (Arn)µ1···µ`ν1···νm = (Arn)α1···α`

β1···βm . (4.41)

Since (Arn)µ1···µ`ν1···νm is orthogonal to uµ, it can only be constructed from combinations of
projection operators, ∆µν . This already constrains m+ ` to be an even number, since it is
impossible to construct odd-ranked tensors solely from projection operators. This means
that both ` and m are either even or odd. Therefore, the following type of terms could
appear in (Arn)µ1···µ`ν1···νm :

(i) Terms where all µ-type indices pair up on projectors ∆µiµj and all ν-type indices
on projectors ∆νpνq , e.g.,

∆µ1µ2 · · ·∆µiµj · · ·∆µ`−1µ`∆ν1ν2 · · ·∆νpνq · · ·∆νm−1νm . (4.42)

All possible permutations of the µ-type among themselves and ν-type indices among
themselves are allowed.

(ii) Terms where at least one µ-type index pairs with a ν-type index on a projector,
e.g.,

∆µ1
ν1

∆µ2µ3 · · ·∆µiµj · · ·∆µ`−1µ`∆ν2ν3 · · ·∆νpνq · · ·∆νm−1νm . (4.43)

Again, all possible permutations of the µ-type and ν-type indices are allowed. If
there is an odd number of projectors of the type ∆µi

νp , both ` and m must be odd. If
there is an even number, both ` and m must be even, too. Without loss of generality,
suppose that ` > m. For ` + m to be even, ` must be m + 2,m + 4, . . .. Then one
could pair all ν-type indices with µ-type indices on projectors of the form ∆µi

νp , with
some projectors left over which carry only µ-type indices, e.g., ∆µjµk .

(iii) If ` = m, all µ-type indices could be paired up with ν-type indices on projectors of
the form ∆µi

νp , with no left-over projectors like explained at the end of (ii),

∆µ1
ν1
· · ·∆µ`

ν`
. (4.44)

Again, all permutations of the µ-type indices among themselves and ν-type indices
among themselves are allowed.
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4 Method of Moments

Note that terms of the type (i) and (ii) by themselves do not satisfy the property (4.41).
This happens because any term which contains at least one projector of the type ∆µiµj

or ∆νpνq vanishes when contracted with ∆α1···α`
µ1···µ`∆

ν1···νm
β1···βm . Therefore, (Arn)µ1···µ`ν1···νm cannot

be solely constructed from terms of type (i) and (ii), because otherwise it would vanish
trivially, and the property (4.41) would not be satisfied. There must at least be one term
of type (iii). However, this implies that m = `. This does not mean that terms of type
(i) and (ii) do not appear; they do occur, but in such a way that Eq. (4.41) is satisfied.
In summary, (Arn)µ1···µ`ν1···νm has the form

(Arn)µ1···µ`ν1···νm = δ`m

{
A(`)
rn∆

(µ1
(ν1
· · ·∆µ`)

ν`)
+ [terms of type (i) and (ii)]

}
, (4.45)

where the parentheses denote the symmetrization of all Lorentz indices. Contracting Eq.
(4.45) with ∆α1···α`

µ1···µ`∆
ν1···ν`
β1···β` and using Eq. (4.41), we prove that

(Arn)α1···α`
β1···βm = δ`mA(`)

rn ∆α1···α`
β1···β` . (4.46)

Finally, substituting Eq. (4.46) into Eq. (4.39) we derive,

L
〈µ1···µ`〉
r−1 = −

∞∑
n=0

A(`)
rnρ

µ1···µ`
n . (4.47)

This completes our goal to express the linear collision term as a linear combination of the
irreducible moments. The coefficients A(`)

rn can be obtained from the following projection
of (Arn)µ1···µ`ν1···ν` ,

A(`)
rn =

1

∆µ1···µ`
µ1···µ`

∆ν1···ν`
µ1···µ` (Arn)µ1···µ`ν1···ν`

=
1

ν (2`+ 1)

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′ f̃0pf̃0p′E

r−1
k k〈µ1 · · · k µ`〉

×
(
H(`)

kn k〈µ1 · · · kµ`〉 +H(`)
k′n k

′
〈µ1 · · · k

′
µ`〉 −H

(`)
pn p〈µ1 · · · pµ`〉 −H

(`)
p′n p

′
〈µ1 · · · p

′
µ`〉

)
,

(4.48)

where we used that ∆µ1···µ`
µ1···µ` = 2` + 1. The coefficients A(`)

rn are (invertible) matrices (the
matrix structure is indicated by the row and column indices r and n) and contain all the
information of the underlying microscopic theory. We explicitly compute some of them
for the case of a classical gas of massless particles with constant cross section in Chapter
5.

We remark that, for ` = 0 the terms with n = 1, 2, and for ` = 1 the term with n = 1
are zero, because the moments ρ1, ρ2, and ρµ1 vanish due to the definition of the velocity
field and the matching conditions, Eqs. (3.16) and (3.23). Therefore, in order to invert

A(`)
rn , for ` = 0 we have to exclude the second and third rows and columns, and for ` = 1

the second row and column.
We note that similar matrices already appeared in the context of Chapman-Enskog

theory and the method of moments, where they were referred to as As
rn, Av

rn, and At
rn, cf.

Eq. (3.93). Note that, if one replaces H(`)
kn → En

k in Eq. (4.48), both definitions actually
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agree (up to prefactors): As
rn → A

(0)
rn , Av

rn → β0A(1)
rn , and At

rn → β2
0A

(2)
rn . Therefore, the

difference between Chapman-Enskog theory and the method of moments is entirely due to
a different basis employed in the moment expansion in each method. In Chapman-Enskog
theory the expansion basis employed was 1,Ek, E2

k, . . ., while in the method of moments

an orthogonal basis of polynomials was employed, 1, P
(`)
k1 , P

(`)
k2 , . . .. Since both bases are

equivalent, the final result will be approximately the same in both methods, provided one
includes a sufficiently large number of basis elements.

4.4 Summary

In this chapter we have presented a relativistic generalization of the method of
moments. We constructed an orthonormal basis in terms of irreducible tensors
k〈µ1 · · · kµ`〉 and polynomials in powers of Ek, which allowed us to expand the devia-
tion δfk of the single-particle distribution function fk from a reference state (which we
took to be the distribution function f0k in local thermodynamical equilibrium) in terms of
the irreducible moments ρµ1···µ`n of the deviations of the distribution function from equi-
librium. We then proceeded to derive exact equations of motion for these moments.
Finally, we also showed how to compute the moments C

〈µ1···µ`〉
n of the collision term

in the Boltzmann equation, which appear in the equations of motion for the irreducible
moments. We restricted the discussion to the part of the collision integral which is linear
in the irreducible moments. In Chapter 5 we will demonstrate how the fluid-dynamical
equations can be derived from the equations of motion for the irreducible moments.

4.5 Appendix 1: Irreducible projection operators

In this appendix, we present the irreducible projection operators necessary to derive
the irreducible moments of δfk. We start by recalling the definition of the irreducible
projection operators [6, 20, 24],

∆µ1···µn
ν1···νn =

[n/2]∑
q=0

C(n, q)
1

Nnq

∑
PnµPnν

∆µ1µ2 · · ·∆µ2q−1µ2q∆ν1ν2 · · ·∆ν2q−1ν2q∆
µ2q+1
ν2q+1

· · ·∆µn
νn .

(4.49)
Here, [n/2] denotes the largest integer less than or equal to n/2, the coefficients C(n, q)
are defined as

C(n, q) = (−1)q
(n!)2

(2n)!

(2n− 2q)!

q!(n− q)!(n− 2q)!
, (4.50)

and the second sum in Eq. (4.49) runs over all distinct permutations PnµPnν of µ- and
ν-type indices. The coefficient in front of this sum is just the inverse of the total number
of these distinct permutations,

Nnq ≡
1

(n− 2q)!

(
n!

2qq!

)2

. (4.51)
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4 Method of Moments

This number can be explained as follows: (n!)2 is the number of all permutations of µ-
and ν-type indices. In order to obtain the number of distinct permutations, one has to
divide this by the number (2q)2 of permutations of µ- and ν-type indices on the same ∆
projectors (where only projectors with only µ- and only ν-type indices are considered),
and by the number (q!)2 of trivial reorderings of the sequence of these projectors. Finally,
one also has to divide by the number (n − 2q)! of trivial reorderings of the sequence of
projectors with mixed indices.

The projectors (4.49) are symmetric under exchange of µ- and ν-type indices,

∆µ1···µn
ν1···νn = ∆

(µ1···µn)
(ν1···νn) , (4.52)

and traceless with respect to contraction of either µ- or ν-type indices,

∆µ1···µn
ν1···νn gµiµj = ∆µ1···µn

ν1···νn g
νiνj = 0 for any i, j . (4.53)

Moreover, upon complete contraction,

∆µ1···µn
µ1···µn ≡ ∆µ1···µnν1···νngµ1ν1 · · · gµnνn = 2n+ 1 , (4.54)

cf. Eq. (23) in Chapter VI.2 of Ref. [6]. Note that the relation (4.54) means that the
projection of an arbitrary tensor of rank n with respect to Eq. (4.49), i.e., Aν1···νn∆µ1···µn

ν1···νn
has 2n+ 1 independent tensor components.

In order to prove this, we note that an arbitrary tensorAµ1···µnd of rank n in d-dimensional
space-time has dn independent components, because each of the n indices can assume d
distinct values. Now consider a rank-n tensor which is completely symmetric with respect
to the interchange of indices. This tensor can be constructed from the arbitrary tensor
Aµ1···µnd via symmetrization,

A
(µ1···µn)
d =

1

n!

∑
Pµ

Aµ1···µnd , (4.55)

where the sum over Pµ runs over all n! permutations of the µ-type indices. The number
of independent tensor components of such a symmetric tensor is given by the number of
combinations with repetition to draw n elements from a set of d elements,

Ndn

(
A

(µ1···µn)
d

)
=

(n+ d− 1)!

n! (d− 1)!
. (4.56)

Let us now demand in addition that this tensor is traceless,

0 = A
(µ1···µn)
d gµn−1µn ≡ A

(µ1···µn−2)
d , (4.57)

where the right-hand side defines a new symmetric tensor of rank n − 2. According to
Eq. (4.56), this tensor has

Ndn

(
A

(µ1···µn−2)
d

)
=

(n+ d− 3)!

(n− 2)! (d− 1)!
(4.58)
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independent components. This is also the number of constraints by which the number of
independent components of the original symmetric tensor A

(µ1···µn)
d is reduced, if we de-

mand that it is traceless in addition to being symmetric. Thus, the number of independent
components of a symmetric traceless tensor is

Ndn

(
A

(µ1···µn)
d,tr−less

)
= Ndn

(
A

(µ1···µn)
d

)
−Ndn

(
A

(µ1···µn−2)
d

)
(4.59)

=
(n+ d− 1)!

n! (d− 1)!
− (n+ d− 3)!

(n− 2)! (d− 1)!
=

(n+ d− 3)!

n! (d− 2)!
(2n+ d− 2) .

Let us now require in addition that such a symmetric traceless tensor is orthogonal to a
given 4-vector uµ,

0 = A
(µ1···µn)
d,tr−less⊥uµn ≡ A

(µ1···µn−1)
d,tr−less . (4.60)

The right-hand side defines a new symmetric traceless tensor of rank n−1 which, according
to Eq. (4.59), has

Ndn

(
A

(µ1···µn−1)
d,tr−less

)
=

(n+ d− 4)!

(n− 1)! (d− 2)!
(2n+ d− 4) (4.61)

independent components. This number reduces the number of independent components
of the original symmetric traceless tensor, if we demand in addition that it is orthogonal
to uµ; thus the latter has

Ndn

(
A

(µ1···µn)
d,tr−less⊥

)
= Ndn

(
A

(µ1···µn)
d,tr−less

)
−Ndn

(
A

(µ1···µn−1)
d,tr−less

)
=

(n+ d− 3)!

n! (d− 2)!
(2n+ d− 2)− (n+ d− 4)!

(n− 1)! (d− 2)!
(2n+ d− 4)

=
(n+ d− 4)!

n! (d− 3)!
(2n+ d− 3) (4.62)

independent components. Comparing this equation to Eq. (4.59) we realize that the
orthogonality constraint (4.60) has effectively reduced the number of dimensions by one
unit, d→ d− 1.

Now taking d = 4, Eq. (4.62) tells us that any symmetric traceless tensor of rank n,

which is orthogonal to uµ, has N4n(A
(µ1···µn)
4,tr−less⊥) = 2n+ 1 independent components. If this

tensor is in addition orthogonal to another 4-vector lµ, then Eq. (4.62) applies replacing

d = 4 by d = 3, and we obtain N3n(A
(µ1···µn)
3,tr−less⊥) = 2 independent components. This result

is independent of the tensor rank n.

4.6 Appendix 2: Thermodynamic integrals and properties

In this appendix, we compute the thermodynamic integrals Ii+n,q in Eq. (4.31). They are
obtained by suitable projections of the tensors

Iµ1···µni =
〈
Ei

k k
µ1 · · · kµn

〉
0
, (4.63)
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where the angular brackets denote the average over momentum space defined in Eq. (3.24).
The subscript i on this quantity reflects the power of Ek in the definition of the moment.
Due to the fact that the equilibrium distribution function depends only on the quantities
α0, β0, and the flow velocity uµ, the equilibrium moments can be expanded in terms of
uµ and the projector ∆µν as

Iµ1···µni =

[n/2]∑
q=0

(−1)q bnq Ii+n,q ∆(µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn) , (4.64)

where n, q are natural numbers while the sum runs over 0 ≤ q ≤ [n/2]. Here, [n/2]
denotes the largest integer which is less than or equal to n/2.

The coefficient bnq in Eq. (4.64) is defined as the number of distinct terms in the
symmetrized tensor product

∆(µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn) ≡ 1

bnq

∑
Pnµ

∆µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn , (4.65)

where the sum runs over all distinct permutations of the n indices µ1, . . . , µn. The total
number of permutations of n indices is n!. There are q projection operators ∆µiµj and
n − 2q factors of uµk . Permutations of the order of the ∆µiµj and of the uµk among
themselves do not lead to distinct terms, so we need to divide the total number n! by
q!(n− 2q)!. Finally, since ∆µiµj is a symmetric projection operator, a permutation of its
indices does not lead to a distinct term. Since there are q such projection operators, there
are 2q permutations that also do not lead to distinct terms. Hence, the total number of
distinct terms in the symmetrized tensor product is

bnq ≡
n!

2qq! (n− 2q)!
=

n! (2q − 1)!!

(2q)! (n− 2q)!
, (4.66)

which is identical to Eq. (A2) of Ref. [4].
In order to obtain the thermodynamic integrals Ii+n,q by projection of the tensors
Iµ1···µni , it is advantageous to use the orthogonality relation [6]

∆(µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn)∆(µ1µ2 · · ·∆µ2q′−1µ2q′
uµ2q′+1

· · ·uµn) =
(2q + 1)!!

bnq
δqq′ .

(4.67)
Let us prove this relation. First, it is clear that if q 6= q′ there are terms where a uµi gets
contracted with a ∆µiµj , which gives zero. The existence of the Kronecker delta is thus
easily explained and we only need to prove Eq. (4.67) for q = q′. Second, as the same
set of indices is symmetrized on both tensor products, it actually suffices to keep the set
of indices fixed on one tensor, say in the order µ1, . . . , µ2q, µ2q+1, . . . , µn, and symmetrize
only the one on the other,

∆(µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn)∆(µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn)

= ∆µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn 1

bnq

∑
Pnµ

∆µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn , (4.68)
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where we used Eq. (4.65). Among the terms in the sum over all distinct permutations,
only those survive where the indices on the u’s are µ2q+1, . . . , µn, just as in the term in
front of the sum. (Otherwise, a uµi will be contracted with a ∆µiµj , which gives zero.)
Permutations among these indices do not lead to distinct terms. Using uµuµ = 1, we thus
obtain

∆(µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn)∆(µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn)

=
1

bnq
∆µ1µ2 · · ·∆µ2q−1µ2q

∑
P2q
µ

∆µ1µ2 · · ·∆µ2q−1µ2q , (4.69)

where the sum now runs only over the distinct permutations of 2q indices µ1, . . . , µ2q on
the ∆ projectors. There are in total (2q)!/(2qq!) ≡ (2q − 1)!! distinct terms, so that we
obtain

∆(µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn)∆(µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn)

=
(2q − 1)!!

bnq
∆µ1µ2 · · ·∆µ2q−1µ2q∆(µ1µ2 · · ·∆µ2q−1µ2q) . (4.70)

The proof of Eq. (4.67) is completed by proving that [6]

∆µ1µ2 · · ·∆µ2q−1µ2q∆(µ1µ2 · · ·∆µ2q−1µ2q) = 2q + 1 . (4.71)

This is done by complete induction. Since ∆µ1µ2∆µ1µ2 = ∆µ1
µ1

= 3, Eq. (4.71) obviously
holds for q = 1. Now suppose it holds for q. Then we have to show that it also holds for
q + 1. In this case, using the definition of the symmetrized tensor,

∆µ1µ2 · · ·∆µ2q+1µ2q+2∆(µ1µ2 · · ·∆µ2q+1µ2q+2)

=
2q+1(q + 1)!

(2q + 2)!
∆µ1µ2 · · ·∆µ2q+1µ2q+2

∑
P2q+2
µ

∆µ1µ2 · · ·∆µ2q+1µ2q+2 . (4.72)

Consider the contraction of ∆µ2q+1µ2q+2 with the sum over distinct permutations of 2q+ 2
indices µ1, . . . , µ2q+2. There is one term in the sum where both indices are on the same
∆ projector. This term is ∼ ∆µ2q+1µ2q+2∆µ2q+1µ2q+2 ≡ 3. Then, there are 2q terms where
the indices µ2q+1 and µ2q+2 are on different projectors, say ∆µ2q+1µj∆µiµ2q+2 . Contracting
with ∆µ2q+1µ2q+2 gives a term ∼ ∆µiµj , where both indices are from the set µ1, . . . , µ2q.
Putting this together and using Eq. (4.71) gives

∆µ1µ2 · · ·∆µ2q+1µ2q+2∆(µ1µ2 · · ·∆µ2q+1µ2q+2)

=
2(q + 1)

(2q + 2)(2q + 1)

2qq!

(2q)!
∆µ1µ2 · · ·∆µ2q−1µ2q(2q + 3)

∑
P2q
µ

∆µ1µ2 · · ·∆µ2q−1µ2q

=
2q + 3

2q + 1
∆µ1µ2 · · ·∆µ2q−1µ2q∆(µ1µ2 · · ·∆µ2q−1µ2q) ≡ 2q + 3 , q.e.d. . (4.73)

With the orthogonality relation (4.67), we now easily find by projecting Eq. (4.64) that

Ii+n,q ≡
(−1)q

(2q + 1)!!
Iµ1···µni ∆(µ1µ2 · · ·∆µ2q−1µ2quµ2q+1 · · ·uµn)

=
(−1)q

(2q + 1)!!

∫
dK Ei+n−2q

ku (∆µνkµkν)
q f0k , (4.74)
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where we used the definition (4.63) of the tensor Iµ1···µni . With the definition of the
thermodynamic average 〈. . .〉0, the second line yields Eq. (4.31).

Other useful relations are obtained from contracting two indices of the tensors (4.63)
with a ∆ projector,

Iµ1···µni ∆µn−1µn = m2 Iµ1···µn−2

i − Iµ1···µn−2

i+2 . (4.75)

Comparison of Eq. (4.63) for n = 0 and Eq. (4.74) for n = q = 0 yields the identity

Ii,0 = Ii , (4.76)

and comparison of Eq. (4.63) for n = 2 and Eq. (4.74) for n = 2, q = 1

Ii+2,1 = −1

3
Iµνi ∆µν = −1

3

(
m2Ii − Ii+2

)
= −1

3

(
m2Ii,0 − Ii+2,0

)
. (4.77)

The thermodynamic integrals (4.31) obey useful recursion relations, which are given

here. Replacing
(
∆αβkαkβ

)q+1
=
(
∆αβkαkβ

)q
(m2 − E2

k) in Eq. (4.31) we obtain for 0 ≤
q ≤ n/2,

In+2,q = m2 Inq + (2q + 3) In+2,q+1 , (4.78)

cf. Eq. (3.54). For n = q = 0 this reads

I20 = m2 I00 + 3I21 , (4.79)

which is consistent with Eq. (4.77) for i = 0. In the massless limit this leads to the
familiar relation ε0 = 3P0.

4.7 Appendix 3: Orthogonality of the irreducible tensors

In this appendix, we derive the orthogonality condition (4.7) for the irreducible tensors
(4.4). The derivation utilizes the relation

k〈µ1 · · · k µ`〉k〈µ1 · · · kµ`〉 =
`!

(2`− 1)!!

(
∆αβkαkβ

)`
. (4.80)

This relation is proved as follows. We first note that

k〈µ1 · · · k µ`〉k〈µ1 · · · kµ`〉 = ∆µ1···µ`
β1···β`∆

α1···α`
µ1···µ`kα1 · · · kα`kβ1 · · · kβ`

= ∆α1···α`
β1···β` kα1 · · · kα`kβ1 · · · kβ` . (4.81)

Now we insert the explicit form (4.49) of the projection operator and note that the con-
traction of all indices with the momenta reduces the second sum (including the prefactor
1/Nnq) to just a factor of (∆αβkαkβ)`,

k〈µ1 · · · k µ`〉k〈µ1 · · · kµ`〉 =

[`/2]∑
q=0

C(`, q)
(
∆αβkαkβ

)`
. (4.82)
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The Legendre polynomials P`(z) have the representation [25]

P`(z) =
1

2`

[`/2]∑
q=0

(−1)q
(2`− 2q)!

q!(`− q)!(`− 2q)!
z`−2q ≡ 1

2`
(2`)!

(`!)2

[`/2]∑
q=0

C(`, q) z`−2q . (4.83)

Since for all `

1 ≡ P`(1) =
1

2`
(2`)!

(`!)2

[`/2]∑
q=0

C(`, q) , (4.84)

we derive the identity

[`/2]∑
q=0

C(`, q) =
2`(`!)2

(2`)!
=
`! 2`−1(`− 1)!

(2`− 1)!
≡ `!

(2`− 1)!!
, (4.85)

where we have used the definition of the double factorial for odd numbers. Inserting this
into Eq. (4.82) proves Eq. (4.80).

The orthogonality condition (4.7) is obtained from an integral of the type

M
〈µ1···µ`〉
〈ν1···νn〉 =

∫
dK F(Ek) k〈µ1 · · · k µ`〉k〈ν1 · · · kνn〉 , (4.86)

which is a tensor of rank (` + n) that is (separately) symmetric under the permutation
of µ-type and ν-type indices. In App. A of Ref. [20] it is proven that tensors of this type
must obey the relation

M
〈µ1···µ`〉
〈ν1···νn〉 = δ`nM∆µ1···µ`

ν1···νn , (4.87)

where M is an invariant scalar that can be computed by completely contracting the
indices of M

〈µ1···µ`〉
〈ν1···νn〉 ,

M ≡ 1

∆µ1···µ`
µ1···µ`

∫
dK F(Ek) k〈µ1 · · · k µ`〉k〈µ1 · · · kµ`〉

=
`!

(2`+ 1)!!

∫
dK F(Ek)

(
∆αβkαkβ

)`
, (4.88)

where we have used Eqs. (4.54) and (4.80). This proves Eq. (4.7).

4.8 Appendix 4: Orthogonal polynomials

The orthogonal polynomials P
(`)
kn are defined by orthogonality condition (4.8) with the

measure ω(`) given by Eq. (4.9).

The polynomials P
(`)
km are generated by the set 1, Ek, E2

k, . . .. We follow Ref. [26] and
construct this orthogonal set via the Gram-Schmidt orthogonalization method and
using the measure (4.9). Without loss of generality, the first polynomial of each series

is always set to one, i.e., P
(`)
k0 = a

(`)
00 = 1. Then, the weights W (`) can be determined

enforcing that the normalization condition (4.8) is satisfied for m = n = 0,∫
dK ω(`) = 1 . (4.89)
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This will lead to the following expressions for the weights,

W (`) =
(−1)`

J̃2`,`

, (4.90)

where it was convenient to define the thermodynamic integrals J̃nq

J̃nq (α0, β0) =

∫
dK En−2q

k

(
−∆αβk

αkβ
)q
f0kGk . (4.91)

With this knowledge, the remaining coefficients a
(`)
nm can be extracted from Eq. (4.8).

For a given value of n, the normalization/orthogonality conditions (4.8) lead to n + 1

equations that can be used to calculate a
(`)
nm for m = 0, . . . , n. Inverting such coefficients

from Eq. (4.8) is a cumbersome task, but can be achieved with the proper numerical
resources. As an example, let us discuss the case of n = 1, for an arbitrary value of `. In
this case, Eqs. (4.5) and (4.8) lead to

a
(`)
10

∫
dK ω(`) + a

(`)
11

∫
dK ω(`)Ek = 0 , (4.92)

a
(`)
10

∫
dK ω(`)Ek + a

(`)
11

∫
dK ω(`)E2

k =
1

a
(`)
11

. (4.93)

The solution of Eqs. (4.92) and (4.93) is

a
(0)
10

a
(0)
11

= − J̃10

J̃00

, (4.94)

[
a

(0)
11

]2

=
J̃2

00

J̃20J̃00 − J̃2
10

, (4.95)

As it turns out, it will always be sufficient to know, for a given n, the ratios, a
(`)
nm/a

(`)
nn,

and the square of a
(`)
nn,
[
a

(`)
nn

]2

, since only these quantities appear in the moment expansion

of φk. Extracting the actual signs of the coefficients is irrelevant. General formulas for

a
(`)
nm/a

(`)
nn and

[
a

(`)
nn

]2

were derived in Ref. [20].
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5 Fluid Dynamics from the Method of
Moments

05/20/2022

In this chapter, we present a general derivation of relativistic fluid dynamics from
the Boltzmann equation [1] employing the generalized method of moments pre-
sented in Chapter 4. The main point of this approach, in contrast with the traditional
14-moment approximation, is that it does not close the fluid-dynamical equations of mo-
tion by an ad hoc truncation of the moment expansion. Instead, the reduction of the
degrees of freedom is performed by identifying the microscopic time scales of the
Boltzmann equation and considering only the slowest ones. In addition, the equations
of motion for the dissipative quantities are truncated according to a systematic power-
counting scheme in Knudsen and inverse Reynolds number. We conclude that
the equations of motion can be closed in terms of only 14 dynamical variables, as long as
we only keep terms of first order in either Knudsen or inverse Reynolds number, or the
product of both. We show that, even though the equations of motion are closed in terms
of these 14 fields, the transport coefficients carry information about all the moments of
the distribution function.

This chapter is organized as follows. In Sec. 5.1 we introduce our power-counting
scheme in terms of Knudsen and inverse Reynolds numbers. Then, by diagonal-
izing the linear part of the set of moment equations derived in Chapter 4, we demonstrate
how to identify the slowest microscopic time scale of the Boltzmann equation for
each dissipative current. We shall derive dynamical equations for the slowest modes,
but approximate faster modes by their asymptotic solution for long times. This
will then lead, in Sec. 5.3, to the complete set of fluid-dynamical equations which
contains all terms up to second order in Knudsen and inverse Reynolds num-
bers R−1

i , i.e., O(Kn2, R−1
i R−1

j , Kn R−1
i ), where the indices i, j = Π, n, π refer to the

particular way of defining the inverse Reynolds numbers (see below). In Sec. 5.4 we first
demonstrate the validity of our approach by restricting the calculation to the 14-moment
approximation and recovering the results derived in Chapter 3 (and of Ref. [2]) for the
transport coefficients for the case of an ultrarelativistic, classical gas with constant cross
section. We then show how to successively improve the expressions for the transport
coefficients by extending the number of moments to 14 + 9× n. We explicitly study
the cases n = 1, 2, and 3. In Sec. 5.6 we derive hyperbolic equations of motion for tran-
sient fluid dynamics that are valid up to second order in Knudsen number. In
Sec. 5.7 we compare the solutions of the derived fluid-dynamical equations to numerical
solutions of the Boltzmann equation for certain shock-wave scenarios. We analyze
the domain of validity of the derived equations, depending on the choice of cross section.
We end this chapter with a brief discussion and summary of the results obtained.
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5.1 Power counting

In Chapter 4 the single-particle distribution function fk is expanded in terms of an or-
thogonal basis in 4-momentum space. The expansion basis contains two basic ingredients.
The first are the irreducible tensors, 1, k〈µ〉, k〈µ1 k µ2〉, . . . , k〈µ1 · · · k µ`〉, . . ., which form
a complete and orthogonal set, analogous to the spherical harmonics [1, 3]. We use
the notation A〈µ1···µ`〉 ≡ ∆µ1···µ`

ν1···ν` A
ν1···ν` , with ∆µ1···µm

ν1···νm being symmetrized and, except for
m = 1, traceless projectors onto the subspaces orthogonal to uµ, as defined in App. 4.5.
In the local rest frame of the fluid, the irreducible tensors are formed from the spatial
components of the 4-momentum kµ. Note that the expansion of fk in Israel-Stewart the-
ory is not in terms of the irreducible tensors k〈µ1 · · · k µ`〉, but in terms of the tensors
kµ1 · · · kµ` , which are complete but neither irreducible nor orthogonal.

The second ingredient are orthogonal polynomials in the energy in the local rest
frame, Ek = uµkµ, P

(`)
nk =

∑n
r=0 a

(`)
nrEr

k, constructed in App. 4.8. Then, fk is expanded as

fk = f0k + f0kf̃0k

∞∑
`=0

N∑̀
n=0

H(`)
nk ρ

µ1···µ`
n k〈µ1 · · · kµ`〉 , (5.1)

where f0k = [exp (β0Ek − α0) + a]−1 is the local-equilibrium distribution function, with
α0 = µ/T being the thermal potential and β0 = 1/T the inverse temperature, while
a = ±1 for fermions/bosons and a = 0 for classical Boltzmann particles. We further

introduced polynomials of order N` in energy, H(`)
nk ≡

(
W (`)/`!

)∑N`
m=n a

(`)
mnP

(`)
mk, with a

normalization constant W (`), and the irreducible moments of δfk = fk − f0k,

ρµ1···µ`r ≡
∫
dK Er

k k
〈µ1 · · · k µ`〉δfk , (5.2)

The values of α0 and β0 are defined by the matching conditions for particle number density
and energy density, n ≡ n0 = 〈Ek〉0, ε ≡ ε0 = 〈E2

k〉0, where 〈· · · 〉0 ≡
∫
dK (· · · ) f0k. The

matching conditions and the definition of uµ according to the Landau-frame choice imply
that the following irreducible moments vanish: ρ1 = ρ2 = ρµ1 = 0.

The equations of motion for ρr, ρ
µ
r , and ρµνr together with their respective transport

coefficients were derived in Chapter 4, cf. Eqs. (4.21) – (4.23). For the sake of convenience,
we again quote these equations of motion,

ρ̇r − Cr−1 = α(0)
r θ − G2r

D20

Πθ +
G2r

D20

πµνσµν +
G3r

D20

∂µn
µ + (r − 1) ρµνr−2σµν

+ rρµr−1u̇µ −∇µρ
µ
r−1 −

1

3

[
(r + 2) ρr − (r − 1)m2ρr−2

]
θ , (5.3)

ρ̇〈µ〉r − C
〈µ〉
r−1 = α(1)

r Iµ + ρνrω
µ
ν +

1

3

[
(r − 1)m2ρµr−2 − (r + 3) ρµr

]
θ −∆µ

λ∇νρ
λν
r−1 + rρµνr−1u̇ν

+
1

5

[
(2r − 2)m2ρνr−2 − (2r + 3) ρνr

]
σµν +

1

3

[
m2rρr−1 − (r + 3) ρr+1

]
u̇µ

+
β0Jr+2,1

ε0 + P0

(
Πu̇µ −∇µΠ + ∆µ

ν∂λπ
λν
)
− 1

3
∇µ
(
m2ρr−1 − ρr+1

)
+ (r − 1) ρµνλr−2σλν , (5.4)
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ρ̇〈µν〉r − C〈µν〉r−1 = 2α(2)
r σµν − 2

7

[
(2r + 5) ρλ〈µr − 2m2 (r − 1) ρ

λ〈µ
r−2

]
σ
ν〉
λ + 2ρλ〈µr ω

ν〉
λ

+
2

15

[
(r + 4) ρr+2 − (2r + 3)m2ρr + (r − 1)m4ρr−2

]
σµν

+
2

5
∇〈µ

(
ρ
ν〉
r+1 −m2ρ

ν〉
r−1

)
− 2

5

[
(r + 5) ρ

〈µ
r+1 −m2rρ

〈µ
r−1

]
u̇ν〉

− 1

3

[
(r + 4) ρµνr −m2 (r − 1) ρµνr−2

]
θ

+ (r − 1) ρµνλρr−2 σλρ −∆µν
αβ∇λρ

αβλ
r−1 + rρµνλr−1u̇λ , (5.5)

where C
〈µ1···µ`〉
r are the irreducible moments of the collision term

C〈µ1···µ`〉r ≡
∫
dK Er

kk
〈µ1 · · · k µ`〉C [f ] . (5.6)

We also employ the usual notation, where σµν ≡ ∇〈µuν〉 is the shear tensor, θ ≡ ∇µu
µ the

expansion scalar, and ωµν ≡ (∇µuν −∇νuµ) /2 the vorticity tensor. The thermodynamic

functions α
(0)
r , α

(1)
r , α

(2)
r , Gnq, and Dnq were introduced and defined in Eqs. (4.28), (4.29),

(4.30), and (4.32). Finally, in deriving these equations, Landau matching conditions [4]
were employed.

In Chapter 4 we further expressed the irreducible moments of the collision term,
C
〈µ1···µ`〉
r−1 , in terms of the irreducible moments of δfk,

C
〈µ1...µ`〉
r−1 = −

N∑̀
n=0

A(`)
rn ρ

µ1···µ`
n + (terms nonlinear in δf) , (5.7)

where the scalars A(`)
rn emerged from the linear part of the collision term, cf. Eq. (4.48),

A(`)
rn =

1

ν (2`+ 1)

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′f̃0pf̃0p′E

r−1
k k〈ν1 · · · k ν`〉

×
(
H(`)

knk〈ν1 · · · kν`〉 +H(`)
k′nk

′
〈ν1 · · · k

′
ν`〉 −H

(`)
pnp〈ν1 · · · pν`〉 −H

(`)
p′np

′
〈ν1 · · · p

′
ν`〉

)
, (5.8)

while (terms nonlinear in δf) correspond to terms that are nonlinear in the irreducible
moments of δfk.

It was found that there is an infinite number of coupled equations (labeled by the
index r) for these moments, and the equations for the moments up to rank two contain
moments of rank higher than two. In general, one would have to solve this infinite set
of coupled equations in order to determine the time evolution of the system. However,
in the fluid-dynamical limit, it is expected that the macroscopic dynamics of a given
system simplifies, and therefore it can be described by the conserved currents Nµ and
T µν alone. From the kinetic point of view, it is usually believed that the validity of the
fluid-dynamical limit can be quantified by the Knudsen number,

Kn =
λ

L
, (5.9)

where λ and L are typical microscopic and macroscopic length or time scales of the sys-
tem, respectively, as already defined in Chapter 1. The relevant macroscopic scales are
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5 Fluid Dynamics from the Method of Moments

usually estimated from the gradients of fluid-dynamical quantities, while the micro-
scopic scales are of the order of the mean free path or time between collisions. It is
generally assumed that when there is a clear separation of the microscopic and macro-
scopic scales, i.e., when Kn � 1, the microscopic details can be safely integrated
out and the dynamics of the system can be described using only a few macroscopic
fields.

Furthermore, we also expect fluid dynamics to be valid near local thermodynamical
equilibrium, i.e., when δfk � f0k. We can quantify the deviation from equilibrium in
terms of the macroscopic variables by defining a set of ratios of dissipative quantities
to the equilibrium pressure or density. These can be understood as generalizations
of the inverse Reynolds number and will be denoted as

R−1
Π ≡

|Π|
P0

, R−1
n ≡

|nµ|
n0

, R−1
π ≡

|πµν |
P0

. (5.10)

Since the non-equilibrium moments are integrals of δfk, while the equilibrium pressure
and particle number density are integrals over the equilibrium distribution function f0k,
these ratios may be used to quantify how significantly the system deviates from
equilibrium.

With this in mind, it is clear that these two measures, the Knudsen number and the
inverse Reynolds number, should be used to quantify the proximity of the system to the
fluid-dynamical limit. In general, these two measures are independent of each other,
e.g., a system can be initialized in such way that the Knudsen number is large, but the
inverse Reynolds number is small or vice versa. When deriving transient fluid dynamics,
one should not a priori assume that Kn ∼ R−1

i : while the inverse Reynolds and Knudsen
numbers are certainly related, their relation is in principle dynamical and is precisely
what we aim to find. Only for asymptotically long times, when the solutions of the
dynamical equations approach their Navier-Stokes values, one typically has Kn ∼
R−1
i , as will be discussed in more detail below.
In the traditional 14-moment approximation introduced by Israel and Stewart [5], the

fluid-dynamical limit is implemented by a truncation of the expansion of the distribution
function, which corresponds neither to a truncation in Knudsen nor in inverse Reynolds
number. In this sense, the domain of validity of the equations of motion obtained via the
traditional 14-moment approximation is not clear, because it is not possible to determine
the order of the terms that were neglected. In order to obtain a closed set of macroscopic
equations with a clear domain of validity in both Kn and R−1

i , another truncation
procedure is necessary. Its derivation is the main purpose of this chapter.

5.2 Resummed transient relativistic fluid dynamics

The exact equations of motion (5.3) – (5.5) contain infinitely many degrees of free-
dom, given by the irreducible moments of the distribution function, and also infinitely
many microscopic time scales, related to the coefficients A(`)

rn . As was argued in Ref.
[6], the slowest microscopic time scale should dominate the dynamics at long times,
i.e., in the fluid-dynamical limit. In order to extract the relevant relaxation time scales,
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5.2 Resummed transient relativistic fluid dynamics

we have to determine the normal modes of Eqs. (5.3) – (5.5), i.e., we diagonalize the
part which is linear in the irreducible moments ρµ1···µ`r . These are the linear terms on
the left-hand sides arising from Eq. (5.7) and the first terms on the right-hand sides. The
nonlinear terms from Eq. (5.7) as well as the remaining terms on the right-hand sides
of Eqs. (5.3) – (5.5), which are products of the moments and gradients of the primary
fluid-dynamical variables α0, β0, and uµ, or which are gradients of the moments, are not
considered in the diagonalization procedure. Identifying and separating the microscopic
time scales of the Boltzmann equation is also the basic step for obtaining general relations
between the irreducible moments and the dissipative currents and, as we shall see, closing
the equations of motion in terms of Nµ and T µν .

To this end, we shall introduce the matrix Ω(`), which diagonalizes A(`),(
Ω−1

)(`)A(`)Ω(`) = diag
(
χ

(`)
0 , . . . , χ

(`)
j , . . .

)
, (5.11)

where χ
(`)
j are the eigenvalues of A(`). We further define the tensors Xµ1···µ`

i as

Xµ1···µ`
i ≡

N∑̀
j=0

(
Ω−1

)(`)

ij
ρµ1···µ`j . (5.12)

These are the eigenmodes of the linearized Boltzmann equation. Multiplying Eq. (5.7)

with (Ω−1)
(`)

from the left and using Eqs. (5.11) and (5.12) we obtain

N∑̀
j=0

(
Ω−1

)(`)

ij
C
〈µ1···µ`〉
j−1 = −χ(`)

i X
µ1···µ`
i + (terms nonlinear in δf) , (5.13)

where we do not sum over the index i on the right-hand side of the equation. Then we

multiply Eqs. (5.3) – (5.5) with (Ω−1)
(`)
ir and sum over r. Using Eq. (5.13), we obtain the

equations of motion for the new variables Xµ1···µ`
i ,

Ẋi + χ
(0)
i Xi = β

(0)
i θ + (higher-order terms) ,

Ẋ
〈µ〉
i + χ

(1)
i Xµ

i = β
(1)
i Iµ + (higher-order terms) ,

Ẋ
〈µν〉
i + χ

(2)
i Xµν

i = β
(2)
i σµν + (higher-order terms) , (5.14)

where we introduced the transport coefficients

β
(0)
i =

N0∑
j=0, 6=1,2

(
Ω−1

)(0)

ij
α

(0)
j , β

(1)
i =

N1∑
j=0,6=1

(
Ω−1

)(1)

ij
α

(1)
j , β

(2)
i = 2

N2∑
j=0

(
Ω−1

)(2)

ij
α

(2)
j .

(5.15)
With “higher-order terms” in Eqs. (5.14) we refer to the terms nonlinear in δf from Eq.
(5.13) as well as to the higher-order terms on the right-hand sides of Eqs. (5.3) – (5.5). As
expected, the equations of motion for the tensors Xµ1···µ`

i decouple in the linear regime,
displaying a relaxation-type behavior. Without loss of generality, we order the tensors
Xµ1···µ`
r according to increasing χ

(`)
r , i.e., χ

(`)
r < χ

(`)
r+1 ∀ `.
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5 Fluid Dynamics from the Method of Moments

By diagonalizing Eqs. (5.3) – (5.5) we were able to identify the microscopic time

scales of the Boltzmann equation given by the inverse of the coefficients χ
(`)
r . It is

clear that, if the nonlinear terms in Eqs. (5.14) are sufficiently small, each tensor Xµ1···µ`
r

relaxes exponentially and independently to its respective asymptotic value, given
by the first term on the right-hand sides of Eqs. (5.14) (divided by the corresponding χ

(`)
r ),

on a time scale ∼ 1/χ
(`)
r . We will refer to these asymptotic solutions as Navier-Stokes

values. By neglecting all relaxation scales, i.e., taking the limit χ
(`)
r →∞ with the ratio

β
(`)
r /χ

(`)
r held fixed, all irreducible moments ρµ1···µ`r become proportional to gradients of

α0, β0, and uµ, and we obtain a Chapman-Enskog-type solution, which at first order in
the Knudsen number results in the relativistic Navier-Stokes equations of fluid dynamics.
As already discussed, these equations provide solutions which are unstable and acausal,
hence they cannot provide a proper description of relativistic fluids.

The solution for this problem was already mentioned in Chapter 1. To obtain causal
and stable equations one must take into account the characteristic time scales over
which the bulk-viscous pressure, the particle-diffusion current, and the shear-stress ten-
sor relax towards their asymptotic Navier-Stokes values. As shown in Ref. [6], in the
fluid-dynamical limit these are given by the slowest microscopic time scales of the
underlying microscopic theory.

In practice, this is implemented by assuming that only the slowest modes with rank 2
and smaller, X0, Xµ

0 , and Xµν
0 , remain in the transient regime and satisfy the partial

differential equations (5.14),

Ẋ0 + χ
(0)
0 X0 = β

(0)
0 θ + (higher-order terms) ,

Ẋ
〈µ〉
0 + χ

(1)
0 Xµ

0 = β
(1)
0 Iµ + (higher-order terms) ,

Ẋ
〈µν〉
0 + χ

(2)
0 Xµν

0 = β
(2)
0 σµν + (higher-order terms) , (5.16)

while the modes described by faster relaxation scales, i.e., Xr, X
µ
r , and Xµν

r , for any
r > 0, will be approximated by their asymptotic solutions,

Xr '
β

(0)
r

χ
(0)
r

θ + (higher-order terms) ,

Xµ
r '

β
(1)
r

χ
(1)
r

Iµ + (higher-order terms) ,

Xµν
r '

β
(2)
r

χ
(2)
r

σµν + (higher-order terms) . (5.17)

While this approximation is similar to the Chapman-Enskog expansion, Eqs. (5.16) go
beyond the Chapman-Enskog expansion since they include the transient dynamics of
the slowest eigenmodes.

Note that, for r ≥ 1, Xr, X
µ
r , and Xµν

r are of first order in Knudsen number,
O(Kn). The reason is that the gradient terms θ, Iµ, and σµν are proportional to L−1,

while 1/χ
(`)
r is proportional to λ. The other coefficients β

(`)
r are simply functions of the

thermodynamic variables α0, β0.
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5.2 Resummed transient relativistic fluid dynamics

Furthermore, in order to obtain the traditional equations of fluid dynamics given in
terms of the conserved currents, it was already mentioned that there should not appear
any tensor Xµνλ...

r of rank higher than 2. Neglecting such tensors is justified because they
have asymptotic solutions which are at least O(Kn2,Kn R−1

i ), i.e., beyond the order we
consider here. This can be seen by noting that it is impossible to construct irreducible
tensors of rank larger than 2 in terms of single powers of space-like gradients of
temperature, chemical potential or velocity, i.e., it is impossible to construct irreducible
tensors of rank larger than 2 that are only of first order in Knudsen number.

Equations (5.17) enable us to approximate, up to a given order in Knudsen number,
the irreducible moments that do not appear in the conserved currents in terms of those
that do occur, namely the particle-diffusion current, the bulk-viscous pressure, and the
shear-stress tensor. Using relations (5.17) it is possible to prove that, for all r, n ≥ 1,

Xn =
χ

(0)
r

χ
(0)
n

β
(0)
n

β
(0)
r

Xr + (higher-order terms) , (5.18)

Xµ
n =

χ
(1)
r

χ
(1)
n

β
(1)
n

β
(1)
r

Xµ
r + (higher-order terms) , (5.19)

Xµν
n =

χ
(2)
r

χ
(2)
n

β
(2)
n

β
(2)
r

Xµν
r + (higher-order terms) . (5.20)

Then, choosing, e.g., r = 3 for the scalar modes, r = 2 for the vector modes, and r = 1
for the tensor modes in the above relations, we can write,

Xn =
χ

(0)
3

χ
(0)
n

β
(0)
n

β
(0)
3

X3 + (higher-order terms) , (5.21)

Xµ
n =

χ
(1)
2

χ
(1)
n

β
(1)
n

β
(1)
2

Xµ
2 + (higher-order terms) , (5.22)

Xµν
n =

χ
(2)
1

χ
(2)
n

β
(2)
n

β
(2)
1

Xµν
1 + (higher-order terms) . (5.23)

Next, we invert Eq. (5.12),

ρµ1···µ`r =

N∑̀
n=0

Ω(`)
rnX

µ1···µ`
n , (5.24)

and, using Eqs. (5.17), obtain

ρr ' Ω
(0)
r0 X0 +

(
χ

(0)
3

β
(0)
3

N0∑
n=3

Ω(0)
rn

β
(0)
n

χ
(0)
n

)
X3 = Ω

(0)
r0 X0 +O(Kn) ,

ρµr ' Ω
(1)
r0 X

µ
0 +

(
χ

(1)
2

β
(1)
2

N1∑
n=2

Ω(1)
rn

β
(1)
n

χ
(1)
n

)
Xµ

2 = Ω
(1)
r0 X

µ
0 +O(Kn) ,

ρµνr ' Ω
(2)
r0 X

µν
0 +

(
χ

(2)
1

β
(2)
1

N2∑
n=1

Ω(2)
rn

β
(2)
n

χ
(2)
n

)
Xµν

1 = Ω
(2)
r0 X

µν
0 +O(Kn) . (5.25)
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Here, we indicated that the contributions from the modes X3, X
µ
2 , and Xµν

1 are of order
O(Kn), cf. Eq. (5.17).

The dissipative quantities appearing in the conservation laws can be exactly identified
with the irreducible moments ρ0, ρµ0 , and ρµν0 in the following way,

ρ0 = − 3

m2
Π , ρµ0 = nµ , ρµν0 = πµν . (5.26)

Thus, taking r = 0 in Eqs. (5.25) and, without loss of generality, setting Ω
(`)
00 = 1 we

obtain,

− 3

m2
Π ' X0 +

(
χ

(0)
3

β
(0)
3

N0∑
n=3

Ω
(0)
0n

β
(0)
n

χ
(0)
n

)
X3 = X0 +O(Kn) ,

nµ ' Xµ
0 +

(
χ

(1)
2

β
(1)
2

N1∑
n=2

Ω
(1)
0n

β
(1)
n

χ
(1)
n

)
Xµ

2 = Xµ
0 +O(Kn) ,

πµν ' Xµν
0 +

(
χ

(2)
1

β
(2)
1

N2∑
n=1

Ω
(2)
0n

β
(2)
n

χ
(2)
n

)
Xµν

1 = Xµν
0 +O(Kn) . (5.27)

Substituting Eqs. (5.27) into Eqs. (5.25) and using Eq. (5.15), we obtain

m2

3
ρr ' −Ω

(0)
r0 Π +

χ
(0)
3

β
(0)
3

(
ζr − Ω

(0)
r0 ζ0

)
X3 = −Ω

(0)
r0 Π +O(Kn) ,

ρµr ' Ω
(1)
r0 n

µ +
χ

(1)
2

β
(1)
2

(
κr − Ω

(1)
r0 κ0

)
Xµ

2 = Ω
(1)
r0 n

µ +O(Kn) ,

ρµνr ' Ω
(2)
r0 π

µν + 2
χ

(2)
1

β
(2)
1

(
ηr − Ω

(2)
r0 η0

)
Xµν

1 = Ω
(2)
r0 π

µν +O(Kn) ,

ρµνλ···r ' O(Kn2,Kn R−1
i ) , (5.28)

where we defined the transport coefficients

ζr ≡
m2

3

N0∑
n=0, 6=1,2

τ (0)
rn α

(0)
n , κr ≡

N1∑
n=0,6=1

τ (1)
rn α

(1)
n , ηr ≡

N2∑
n=0

τ (2)
rn α

(2)
n , (5.29)

with

τ (`)
rn ≡

N∑̀
m=0

Ω(`)
rm

1

χ
(`)
m

(
Ω−1

)(`)

mn
. (5.30)

These coefficients define the inverse of A(`), τ (`) ≡ (A−1)
(`)

, cf. Eq. (5.11). Note that, for
` = 0, one excludes the m = 1, 2 terms in the sum, and for ` = 1 the m = 1 term. In order
to obtain the fourth equation (5.28), we further used that Xµ1···µ`

r ∼ O(Kn2,Kn R−1
i ) for

` ≥ 3. In the next subsection, we shall identify the coefficients ζ0, κ0, and η0 as the
bulk-viscosity, particle-diffusion, and shear-viscosity coefficient, respectively.
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5.2 Resummed transient relativistic fluid dynamics

So far we have proved that, by taking into account only the slowest relaxation time
scales, all irreducible moments of the deviation of the single-particle distribution func-
tion from the equilibrium one can be related, up to first order in Knudsen number,
O(Kn), to the dissipative currents, Π, nµ, and πµν . This demonstrates that in this
limit, it is possible to reduce the number of dynamical variables in Eqs. (5.3) – (5.5)
to quantities appearing in the conserved currents. This will be explicitly shown in
the next section. We note that so far we also explicitly kept the terms ∼ X3, X

µ
2 , X

µν
1 , for

the purpose of extending traditional fluid dynamics, which only considers the 14 quanti-
ties appearing in the conservation equations as dynamical variables, to a fluid-dynamical
theory with a larger number of dynamical variables, see Sec. 5.6.

We remark that similar relations between the irreducible moments and the dissipative
currents can also be obtained with the 14-moment approximation, but with a different set
of proportionality coefficients [7]. However, in the traditional 14-moment approximation
such relations are obtained by explicitly truncating the moment expansion and, as
a result, they are not of a definite order in powers of Knudsen number. This is the
reason why the 14-moment approximation does not give rise to equations of motion with
a definite domain of validity in Knudsen and inverse Reynolds numbers.

Note, however, that the relations (5.28) are only valid for the moments ρµ1···µ`r with
positive r. This is not a problem since similar relations can also be obtained for the
irreducible moments with negative r. The moment expansion developed in Sec. 4.1 was
constructed in terms of a complete basis and, therefore, any moment that does not
appear in this expansion must be linearly related to those that do appear. This means
that, using this moment expansion, it is possible to express the moments with negative
r in terms of the ones with positive r. This was already done in Sec. 4.1, cf. Eq. (4.17).
Here, we re-express this formula using a different notation,

ρν1···ν`−r =

N∑̀
n=0

F (`)
rn ρ

ν1···ν`
n , (5.31)

where we defined the following thermodynamic integral

F (`)
rn =

`!

(2`+ 1)!!

∫
dK f0kf̃0kE

−r
k H

(`)
kn

(
∆αβkαkβ

)`
. (5.32)

Therefore, Eq. (5.28) reads for negative values of r

m2

3
ρ−r = − γ(0)

r Π +

[
χ

(0)
3

β
(0)
3

N0∑
n=0, 6=1,2

F (0)
rn

(
ζn − Ω

(0)
n0 ζ0

)]
X3 = − γ(0)

r Π +O(Kn) ,

ρµ−r = γ(1)
r nµ +

[
χ

(1)
2

β
(1)
2

N1∑
n=0, 6=1

F (1)
rn

(
κn − Ω

(1)
n0κ0

)]
Xµ

2 = γ(1)
r nµ +O(Kn) ,

ρµν−r = γ(2)
r πµν + 2

[
χ

(2)
1

β
(2)
1

N2∑
n=0

F (2)
rn

(
ηn − Ω

(2)
n0 η0

)]
Xµν

1 = γ(2)
r πµν +O(Kn) ,

ρµν···−r = O(Kn2,Kn R−1
i ) , (5.33)
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where we introduced the coefficients

γ(0)
r =

N0∑
n=0, 6=1,2

F (0)
rn Ω

(0)
n0 , γ(1)

r =

N1∑
n=0,6=1

F (1)
rn Ω

(1)
n0 , γ(2)

r =

N2∑
n=0

F (2)
rn Ω

(2)
n0 . (5.34)

5.3 Resummed transient relativistic fluid dynamics: 14
dynamical variables

Now we are ready to close Eqs. (5.3) – (5.5) in terms of the 14 quantities appearing in
Nµ and T µν , i.e., the five primary fluid-dynamical quantities α0, β0, and uµ, as well as
the nine dissipative currents Π, nµ, and πµν , and to derive the fluid-dynamical equations
of motion for these 14 dynamical variables.

For this purpose, it is convenient to use the inverse of A(`), τ (`) = (A−1)
(`)

, cf. Eq.
(5.30), which by definition satisfies τ (`)A(`) = 1. Hence, it is straightforward to rewrite
Eq. (5.7) as

N∑̀
j=0

τ
(`)
ij C

〈µ1···µ`〉
j−1 = −ρµ1···µ`i + (terms nonlinear in δf) . (5.35)

Then we multiply Eqs. (5.3) – (5.5) by τ
(`)
nr , sum over r, and substitute Eq. (5.35). Next,

we use Eqs. (5.28) and (5.33) to replace all irreducible moments ρµ1···µ`i appearing in the
equations by the fluid-dynamical variables. Additionally, all covariant time derivatives
of α0, β0, and uµ are replaced by spatial gradients of fluid-dynamical variables using the
conservation laws in the form shown in Eqs. (4.25), (4.26), and (4.27). The resulting
equations of motion can be written in the following form,

τΠΠ̇ + Π = −ζθ + J +K +R , (5.36)

τnṅ
〈µ〉 + nµ = κIµ + J µ +Kµ +Rµ , (5.37)

τππ̇
〈µν〉 + πµν = 2ησµν + J µν +Kµν +Rµν . (5.38)

We remark that in order to derive these equations of motion, we substituted X3, Xµ
2 , and

Xµν
1 in Eqs. (5.28) and (5.33) by their Navier-Stokes values, i.e.,

X3 =
β

(0)
3

χ
(0)
3

θ , Xµ
2 =

β
(1)
2

χ
(1)
2

Iµ , Xµν
1 =

β
(2)
1

χ
(2)
1

σµν , (5.39)

and used Eq. (5.11) in the following form,

N∑̀
j=0

τ
(`)
ij Ω

(`)
jm = Ω

(`)
im

1

χ
(`)
m

. (5.40)
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We further made use of the following relations,

θ̇ = −σµνσµν + ωµνωµν −
1

3
θ2 +

1

ε0 + P0

∇µF
µ − 2 (ε0 + P0) + β0J30

(ε0 + P0)3 FµF
µ

− (ε0 + P0) J20 − n0J30

(ε0 + P0)3 FµI
µ +O

(
Kn2R−1

i

)
, (5.41)

İ〈µ〉 =
(ε0 + P0) J20 − n0J30

D20

∇µθ −
{

∂

∂β0

[
β0

(ε0 + P0) J20 − n0J30

D20

]}
1

ε0 + P0

θF µ

+

{[(
∂

∂α0

+ h−1
0

∂

∂β0

)
(ε0 + P0) J20 − n0J30

D20

]
− 1

3

}
θIµ

− σµαIα − ωµαIα −
1

3
θIµ +O

(
Kn2R−1

i

)
, (5.42)

σ̇〈µν〉 = −σ〈µλ σ
ν〉λ + 2σ

〈µ
λ ω

ν〉λ − ω 〈µλ ω ν〉λ − 2

3
σµνθ +

1

ε0 + P0

∇〈µF ν〉

− 2(ε0 + P0) + β0J30

(ε0 + P0)3 F 〈µF ν〉 − (ε0 + P0)J20 − n0J30

(ε0 + P0)3 F 〈µ I ν〉 +O
(
Kn2R−1

i

)
,

(5.43)

where we defined F µ ≡ ∇µP0.
In the above equations of motion all nonlinear terms and couplings to other currents

were collected in the tensors J , K, R, J µ, Kµ, Rµ, J µν , Kµν , and Rµν . The tensors
J , J µ, and J µν contain all terms of first order in the product of Knudsen and
inverse Reynolds numbers,

J = −`Πn∇µn
µ − τΠnn

µFµ − δΠΠΠθ − λΠnn
µIµ + λΠππ

µνσµν ,

J µ = −τnnνωνµ − δnnnµθ − `nΠ∇µΠ + `nπ∆µν∇λπ
λ
ν + τnΠΠF µ − τnππµνFν

− λnnnνσµν + λnΠΠIµ − λnππµνIν ,
J µν = 2τππ

〈µ
λ ω

ν〉λ − δπππµνθ − τπππλ〈µσ ν〉λ + λπΠΠσµν − τπnn〈µF ν〉

+ `πn∇〈µnν〉 + λπnn
〈µ I ν〉 . (5.44)

The tensors K, Kµ, and Kµν contain all terms of second order in Knudsen number,

K = ζ̃1ωµνω
µν + ζ̃2σµνσ

µν + ζ̃3θ
2 + ζ̃4IµI

µ + ζ̃5FµF
µ + ζ̃6IµF

µ + ζ̃7∇µI
µ + ζ̃8∇µF

µ ,

Kµ = κ̃1σ
µνIν + κ̃2σ

µνFν + κ̃3I
µθ + κ̃4F

µθ + κ̃5ω
µνIν + κ̃6∆µ

λ∂νσ
λν + κ̃7∇µθ ,

Kµν = η̃1ω
〈µ
λ ω ν〉λ + η̃2θσ

µν + η̃3σ
λ〈µσ

ν〉
λ + η̃4σ

〈µ
λ ω

ν〉λ

+ η̃5I
〈µ I ν〉 + η̃6F

〈µF ν〉 + η̃7I
〈µF ν〉 + η̃8∇〈µ I ν〉 + η̃9∇〈µF ν〉 . (5.45)

The tensors R, Rµ, and Rµν contain all terms of second order in inverse Reynolds
number,

R = ϕ1Π2 + ϕ2nµn
µ + ϕ3πµνπ

µν ,

Rµ = ϕ4nνπ
µν + ϕ5Πnµ ,

Rµν = ϕ6Ππµν + ϕ7π
λ〈µπ

ν〉
λ + ϕ8n

〈µnν〉 . (5.46)
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In Eqs. (5.36) – (5.38), terms of order O(Kn3), O(R−1
i R−1

j R−1
k ), O(Kn2R−1

i ) and

O(Kn R−1
i R−1

j ) were omitted.
Note that the equations of motion are closed in terms of 14 dynamical variables, even

without making use of the 14-moment approximation. This means that the reduction of
degrees of freedom was not obtained by a direct truncation of the moment expansion,
but by a separation of the microscopic time scales and the power-counting
scheme itself. The information about all other moments are actually included in the
transport coefficients, as will be shown later. If we neglect the terms of second order in
Knudsen and inverse Reynolds number, Eqs. (5.45) and (5.46), respectively, we recover
the equations of motion that are of the same form as those derived via the 14-moment
approximation [2]. However, even in this case, the coefficients in Eq. (5.44) and the
relaxation times in Eqs. (5.36) – (5.38) are not the same as those calculated from the
14-moment approximation of Israel and Stewart.

The resulting equations of motion (5.36) – (5.38) contain 57 transport coefficients.
In particular, the viscosity coefficients and relaxation times of the dissipative cur-
rents are found to be

ζ ≡ ζ0 =
m2

3

N0∑
r=0, 6=1,2

τ
(0)
0r α

(0)
r , κ ≡ κ0 =

N1∑
r=0,6=1

τ
(1)
0r α

(1)
r , η ≡ η0 =

N2∑
r=0

τ
(2)
0r α

(2)
r ,

τΠ ≡
1

χ
(0)
0

, τn ≡
1

χ
(1)
0

, τπ ≡
1

χ
(2)
0

, (5.47)

cf. Eqs. (5.16) and (5.29). Note that in general these transport coefficients depend not
only on one moment of the distribution function but on all moments of corresponding rank
`, i.e., the contribution of higher moments of the distribution function are resummed as
contributions to the microscopic formulas for the transport coefficients. For this reason, we
shall refer to this formalism as Resummed Transient Relativistic Fluid Dynamics
(RTRFD).

As in Chapman-Enskog theory, the viscosity coefficients can only be obtained by invert-
ing A(`). As a matter of fact, the microscopic formulas for ζ, κ, and η obtained above are
equivalent to those obtained from the Chapman-Enskog expansion, see Sec. 3.2. However,
to obtain the transient dynamics of the fluid, characterized by the relaxation times, it is
also necessary to find the eigenvalues and eigenvectors of A(`).

In practice, the moment expansion of the single-particle distribution function is always
truncated and the matrices A(`), Ω(`), and τ (`) will actually be of finite dimension.
The truncation of this expansion was already introduced as an upper limit, N`, in the
corresponding summations. In principle, one should only truncate the moment expansion
when the values of all relevant transport coefficients have converged. Note that different
transport coefficients may require a different number of moments to converge.

5.4 Transport coefficients

In this section, we compute the transport coefficients for several cases. First, we consider
the lowest possible truncation scheme for the moment expansion, with N0 = 2,
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N1 = 1, and N2 = 0. In this case, the distribution function is expanded in terms of 14
moments and is actually equivalent to the one obtained via Israel-Stewart’s 14-moment
Ansatz. Second, we consider the next simplest case and take N0 = 3, N1 = 2, and N2 = 1.
Then, the distribution function is characterized by 23 moments, and consequently we
shall refer to this case as 23-moment approximation. Finally, we include 32 and 41
moments and verify the convergence of the transport coefficients.

We also compute the transport coefficients of the terms appearing in J , J µ, and J µν ,
the explicit expressions of which are given in App. 5.9. Note, however, that we are using
a linear approximation to the collision term. Nonlinear contributions could in
principle also enter the transport coefficients in the equations of motion (5.36) – (5.38),
but will not be calculated here. For this reason we also do not compute any coefficient of
the terms of order O(R−1

i R−1
j ), i.e., those entering R, Rµ, and Rµν , cf. Eq. (5.46), since

all of them originate exclusively from nonlinear contributions to the collision
term. An investigation of these terms can be found in Ref. [8]. App. I of that reference
also contains explicit expressions for the transport coefficients contained in K, Kµ, and
Kµν , cf. Eq. (5.45). One should note that they vanish in the 14-moment approximation
(N0 = 2, N1 = 1, N2 = 0).

5.4.1 14-moment approximation

The 14-moment approximation is recovered by truncating all summations at N0 = 2,
N1 = 1, and N2 = 0. For this specific truncation A(`) is just a number (because for A(0)

we have to exclude the second and third rows and columns and for A(1) the second row
and column), and thus

τ (`) =
1

A(`)
, Ω(`) = 1 , χ(`) = A(`) .

Then, the equations of motion and transport coefficients reduce to those derived in Refs.
[2, 9] and reproduced in Sec. 3.3.

For a classical gas of hard spheres with constant total cross section σ, in the
massless limit the integrals A(1) = A(1)

00 and A(2) = A(2)
00 can be computed and have the

following simple form

A(1) =
4

9λ
, (5.48)

A(2) =
3

5λ
, (5.49)

where we defined the mean free path λ ≡ 1/ (n0σ). The details of this calculation are
shown in App. 5.10. The coefficients in the ultrarelativistic limit, mβ0 → 0, can then be
calculated analytically. The coefficients of order O(Kn R−1

i ) are collected for the shear
viscosity and particle diffusion in Tables 5.1 and 5.2, respectively. Note that, in this
limit, the bulk-viscous pressure vanishes, and thus we do not need to compute A(0) or any
coefficient related to bulk-viscous pressure.
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κ τn[λ] δnn[τn] λnn[τn] λnπ[τn] `nπ[τn] τnπ[τn]
3/ (16σ) 9/4 1 3/5 β0/20 β0/20 β0/(80P0)

Table 5.1: The transport coefficients for the equation of motion of the particle-diffusion
current, calculated for a classical gas with constant cross section in the ultra-
relativistic limit and in the 14-moment approximation.

η τπ[λ] τππ[τπ] λπn[τπ] δππ[τπ] `πn[τπ] τπn[τπ]
4/(3σβ0) 5/3 10/7 0 4/3 0 0

Table 5.2: The transport coefficients for the equation of motion of the shear-stress tensor,
calculated for a classical gas with constant cross section in the ultrarelativistic
limit and in the 14-moment approximation.

5.4.2 23-moment approximation and beyond

In order to better understand our result (5.47), we compute the first correction to the
expressions in Tables 5.1 and 5.2. For this purpose, we consider N0 = 3, N1 = 2, and
N2 = 1. Then, A(`), Ω(`), and τ (`) are 2 × 2 matrices that can be computed from the
collision integral (4.48). We obtain the elements of A(1,2), its inverse τ (1,2), and Ω(1,2) as

A(1) =
1

3λ

(
2 β2

0/30
−4/β2

0 1

)
, A(2) =

1

λ

(
9/10 −β0/20

4/ (3β0) 1/3

)
, (5.50)

τ (1) =
3

8
λ

(
15/4 −β2

0/8
15/β2

0 15/2

)
, τ (2) =

1

11
λ

(
10 3β0/2

−40/β0 27

)
, (5.51)

Ω(1) =

(
1 1

−
(
15 +

√
105
)
/β2

0

(
−15 +

√
105
)
/β2

0

)
, Ω(2) =

(
1 1

8/β0 10/(3β0)

)
,

(5.52)

see App. 5.10 for details. For all matrices with ` = 1, the second row and column have
been removed. The eigenvalues of A(1) and A(2) are

χ
(1)
0 =

1

2λ

(
1−

√
7

135

)
, χ

(1)
2 =

1

2λ

(
1 +

√
7

135

)
, (5.53)

χ
(2)
0 =

1

2λ
, χ

(2)
1 =

11

15λ
. (5.54)

Note that the next largest eigenvalue following χ
(1)
0 is χ

(1)
2 , not χ

(1)
1 (following our conven-

tion to erase all rows and columns with index 1 in the matrices for ` = 1).

Using Eq. (5.47), we calculate the corrected values for the particle-number diffusion
coefficient and diffusion relaxation time and for the shear viscosity and shear relaxation
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time,

κ =
21

128
n0λ ' 0.164n0λ , (5.55)

τn =
90

45−
√

105
λ ' 2.5897λ , (5.56)

η =
14

11
P0λ ' 1.2727P0λ , (5.57)

τπ = 2λ , (5.58)

where we used that, in the massless and classical limit,

α
(1)
0 =

1

12
n0 , α

(1)
2 = − 1

β0

P0 , (5.59)

α
(2)
0 =

4

5
P0 , α

(2)
1 =

4

β0

P0 . (5.60)

As before, the coefficients in the ultrarelativistic limit, mβ0 → 0, can then be calculated
analytically. The coefficients of order O(Kn R−1

i ) are collected for the equations of motion
of particle-diffusion current and shear-stress tensor in Tables 5.3 and 5.4, respectively.

κ τn[λ] δnn[τn] λnn[τn] λnπ[τn] `nπ[τn] τnπ[τn]
21/ (128σ) 2.59 1.00 0.96 0.054β0 0.118β0 0.0295β0/P0

Table 5.3: The transport coefficients for the equation of motion of the particle-diffusion
current, calculated for a classical gas with constant cross section in the ultra-
relativistic limit and in the 23-moment approximation.

η τπ[λ] τππ[τπ] λπn[τπ] δππ[τπ] `πn[τπ] τπn[τπ]
14/(11σβ0) 2 134/77 0.344/β0 4/3 −0.689/β0 −0.689/n0

Table 5.4: The transport coefficients for the equation of motion of the shear-stress tensor,
calculated for a classical gas with constant cross section in the ultrarelativistic
limit and in the 23-moment approximation.

In order to obtain these expressions we used the results from App. 5.11 and that, in the
massless and classical limit, D20 = 3P 2

0 . Note that most of the transport coefficients are
corrected by the inclusion of more moments in the computation. The coefficients related
to the shear-stress tensor are less affected by the additional moments, when compared to
the particle-diffusion coefficients. This might explain the poor agreement between Israel-
Stewart theory and numerical solutions of the Boltzmann equation in Ref. [10] regarding
heat flow and fugacity.

We further checked the convergence of this approach by taking 32 and 41 moments.
In this case, the matrices A(1,2), τ (1,2), and Ω(1,2) were computed numerically. There is
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5 Fluid Dynamics from the Method of Moments

a clear convergence as we increase the number of moments. For the particular case of
classical particles with constant cross section, 32 moments seem sufficient, see Tables 5.5
and 5.6 for the results.

number of moments κ τn[λ] δnn[τn] λnn[τn] λnπ[τn] `nπ[τn] τnπ[τn]
14 3/ (16σ) 9/4 1 3/5 β0/20 β0/20 β0/(80P0)
23 21/ (128σ) 2.59 1.0 0.96 0.054β0 0.118β0 0.0295β0/P0

32 0.1605/σ 2.57 1.0 0.93 0.052β0 0.119β0 0.0297β0/P0

41 0.1596/σ 2.57 1.0 0.92 0.052β0 0.119β0 0.0297β0/P0

Table 5.5: The transport coefficients for the equation of motion of the particle-diffusion
current, calculated for a classical gas with constant cross section in the ultra-
relativistic limit, in the 14, 23, 32, and 41-moment approximations.

number of moments η τπ[λ] τππ[τπ] λπn[τπ] δππ[τπ] `πn[τπ] τπn[τπ]
14 4/(3σβ0) 5/3 10/7 0 4/3 0 0
23 14/(11σβ0) 2 134/77 0.344/β0 4/3 −0.689/β0 −0.689/n0

32 1.268/(σβ0) 2 1.69 0.254/β0 4/3 −0.687/β0 −0.687/n0

41 1.267/(σβ0) 2 1.69 0.244/β0 4/3 −0.685/β0 −0.685/n0

Table 5.6: The transport coefficients for the equation of motion of the shear-stress tensor,
calculated for a classical gas with constant cross section in the ultrarelativistic
limit, in the 14, 23, 32, and 41-moment approximations.

5.5 Discussion: Navier-Stokes limit and causality

Note that one of the main features of transient theories of fluid dynamics is the relaxation
of the dissipative currents towards their Navier-Stokes values, with time scales given by the
transport coefficients τΠ, τn, and τπ. From the Boltzmann equation, Navier-Stokes theory
is obtained by means of the Chapman-Enskog expansion, cf. Chapter 3, which describes
an asymptotic solution of the single-particle distribution function. It is already clear from
the previous section that the equations of motion derived in this chapter approach Navier-
Stokes-type solutions at asymptotically long times, in which the dissipative currents are
solely expressed in terms of gradients of fluid-dynamical variables.

It is interesting to investigate, however, if our equations approach the correct Navier-
Stokes theory, i.e., if the viscosity coefficients obtained via our method are equivalent to
the ones obtained via Chapman-Enskog theory. It should be noted that this is neither
the case for Grad’s theory nor for Israel’s and Stewart’s theory [2, 3, 5, 11, 12]. The
transport coefficients computed within these theories only coincide, if we use the minimal
truncation scheme in Chapman-Enskog theory, as explained in Chapter 3. We remark
that, after taking into account further corrections to the shear-viscosity coefficient, see Eq.
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5.6 Resummed transient relativistic fluid dynamics: 23 dynamical variables

(5.57) and Table 5.6, our results approach the solution obtained using Chapman-Enskog
theory, ηNS = 1.2654/ (β0σ) [3]. In principle there is no reason for the method of moments
to attain a different Navier-Stokes limit than Chapman-Enskog theory. As a matter of
fact, if the same basis of irreducible tensors k〈µ1 · · · kµ`〉 and polynomials P

(`)
kn is used in

both calculations, they both yield the same result, even order by order.
It is important to mention that the terms K, Kµ, and Kµν , which are of second order in

Knudsen number, lead to several problems. The terms which contain second-order spatial
derivatives of uµ, α0, and P0, e.g., ∇µI

µ, ∇µF
µ, ∇〈µ I ν〉, ∇〈µF ν〉, ∆µ

α∂νσ
αν , and ∇µθ, are

especially problematic since they change the boundary conditions of the equations. In
relativistic systems these derivatives, even though they are squares of space-like vectors,
also contain time derivatives and thus require initial values. This means that, by including
them, one would have to specify not only the initial spatial distribution of the fluid-
dynamical variables but also the spatial distribution of their time derivatives. In practice,
this implies that we would be increasing the number of fluid-dynamical degrees of freedom.

There is an even more serious problem. By including terms of order higher than one
in Knudsen number, the transport equations become parabolic. In a relativistic theory,
this comes with disastrous consequences, since the solutions are acausal and consequently
unstable [13, 14, 15]. For this reason we do not compute the transport coefficients for
these higher-order terms in this chapter.

If one wants to include terms of higher order in Knudsen number, it is mandatory to
include also second-order co-moving time derivatives of the dissipative quantities. Or,
equivalently, one could promote the moments ρ3, ρ

µ
2 , ρ

µν
1 , or further ones, to dynamical

variables. We will show how to do this in the next section.

5.6 Resummed transient relativistic fluid dynamics: 23
dynamical variables

As already discussed, the terms of higher order in Knudsen number render the equations
of motion parabolic, despite the existence of a relaxation time. Therefore, describing the
fluid up to a higher order in Knudsen number using Eqs. (5.36) – (5.38) is problematic
since, in order to do so, one would have to solve parabolic equations in a covariant setup.
In this section, we show how to solve this problem and derive transient fluid-dynamical
equations of motion that are hyperbolic even up to second order in the Knudsen
number.

The parabolic and, thus, acausal nature of the equations of motion (5.36) – (5.38)
can be understood as follows. The main assumption of RTRFD is to approximate the
quickly varying eigenmodes of the Boltzmann equation by their asymptotic (i.e., Navier-
Stokes) values. This approximation happened in Eq. (5.17), while the substitution of the
eigenmodes X3, Xµ

2 , and Xµν
1 by their Navier-Stokes values occurred in Eq. (5.39). It was

this last step that rendered Eqs. (5.36) – (5.38) parabolic since in this substitution it is
implicitly assumed that these eigenmodes relax instantaneously to their corresponding
Navier-Stokes values, consequently leading to acausal behavior.

In order to obtain hyperbolic equations of motion which do not simply neglect terms of
order O(Kn2), it is necessary to refrain from the substitution (5.39). This can be simply
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done by keeping X3, Xµ
2 , and Xµν

1 in Eqs. (5.28) as independent dynamical variables
instead of replacing them by their Navier-Stokes values.

In this case, it is convenient to replace the modes X3, Xµ
2 , and Xµν

1 in Eqs. (5.28)
and (5.33) by irreducible moments of the distribution function. In principle, any of the
irreducible moments ρr, ρ

µ
r , and ρµνr can be used to replace these modes as independent

dynamical variables. Without loss of generality, we choose ρ3, ρµ2 , and ρµν1 . After Π
(` = 0), nµ (` = 1), and πµν (` = 2), these are the irreducible moments with the lowest
power of Ek under the integral (5.2) which appear in the expansion of the single-particle
distribution function (5.1). We can relate X3, Xµ

2 , and Xµν
1 to Π, nµ, πµν , ρ3, ρµ2 , and ρµν1 ,

by taking in Eq. (5.28) r = 3 for the scalar irreducible moment, r = 2 for the first-rank
irreducible moment, and r = 1 for the second-rank irreducible moment, obtaining

χ
(0)
3

β
(0)
3

(
ζ3 − Ω

(0)
30 ζ0

)
X3 =

m2

3
ρ3 + Ω

(0)
30 Π ,

χ
(1)
2

β
(1)
2

(
κ2 − Ω

(1)
20 κ0

)
Xµ

2 = ρµ2 − Ω
(1)
20 n

µ ,

2
χ

(2)
1

β
(2)
1

(
η1 − Ω

(2)
10 η0

)
Xµν

1 = ρµν1 − Ω
(2)
10 π

µν . (5.61)

Then, we substitute the relations (5.61) into Eqs. (5.28) and (5.33), effectively removing
the dependence of the irreducible moments on the eigenmodes X3, X

µ
2 , and Xµν

1 . We
obtain the following new relations for the irreducible moments with positive r,

m2

3
ρr ' λ

(0)
r0 Π + λ

(0)
r3 ρ3 +O(Kn2, Kn R−1

i , R−2
i ) ,

ρµr = λ
(1)
r0 n

µ + λ
(1)
r2 ρ

µ
2 +O(Kn2, Kn R−1

i , R−2
i ) ,

ρµνr = λ
(2)
r0 π

µν + λ
(2)
r1 ρ

µν
1 +O(Kn2, Kn R−1

i , R−2
i ) , (5.62)

and for the irreducible moments with negative r,

m2

3
ρ−r =

(
N0∑

n=0, 6=1,2

F (0)
rn λ

(0)
n0

)
Π +

(
N0∑

n=0, 6=1,2

F (0)
rn λ

(0)
n3

)
ρ3 +O(Kn2, Kn R−1

i , R−2
i ) ,

ρµ−r =

(
N1∑

n=0, 6=1

F (1)
rn λ

(1)
n0

)
nµ +

(
N1∑

n=0,6=1

F (1)
rn λ

(1)
n2

)
ρµ2 +O(Kn2, Kn R−1

i , R−2
i ) ,

ρµν−r =

(
N2∑
n=0

F (2)
rn λ

(2)
n0

)
πµν +

(
N2∑
n=0

F (2)
rn λ

(2)
n1

)
ρµν1 +O(Kn2, Kn R−1

i , R−2
i ) . (5.63)

The thermodynamic functions F (`)
rn were defined in Eq. (5.32) and we introduced the
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auxiliary functions

λ
(0)
r0 =

Ω
(0)
30 ζr − Ω

(0)
r0 ζ3

ζ3 − Ω
(0)
30 ζ0

, λ
(0)
r3 =

m2

3

ζr − Ω
(0)
r0 ζ0

ζ3 − Ω
(0)
30 ζ0

, (5.64)

λ
(1)
r0 =

Ω
(1)
20 κr − Ω

(1)
r0 κ2

Ω
(1)
20 κ0 − κ2

, λ
(1)
r2 =

κ0Ω
(1)
r0 − κr

κ0Ω
(1)
20 − κ2

, (5.65)

λ
(2)
r0 =

Ω
(2)
10 ηr − Ω

(2)
r0 η1

Ω
(2)
10 η0 − η1

, λ
(2)
r1 =

Ω
(2)
r0 η0 − ηr

Ω
(2)
10 η0 − η1

. (5.66)

Using the relations (5.62), (5.63), it is possible to close Eqs. (5.3) – (5.5) in terms of
Π, nµ, πµν , ρ3, ρµ2 , and ρµν1 . The resulting equations of motion will be hyperbolic up to a
higher order in Knudsen number when compared with Eqs. (5.36) – (5.38).

The equations of motion are obtained as explained in Sec. 5.3. We multiply Eqs. (5.3)

– (5.5) by τ
(`)
nr , substitute Eq. (5.35), and sum over r. The only difference is that now

we use Eqs. (5.62) and (5.63) to replace all irreducible moments ρµ1···µ`i appearing in the
equations by Π, nµ, πµν , ρ3, ρµ2 , and ρµν1 . The resulting equations of motion can be written
as

τ̂Π
~̇Π + ~Π = −~ζθ − δ̂ΠΠ

~Πθ − ˆ̀
Πn∇µ~n

µ − τ̂Πn~nµF
µ − λ̂Πn~nµI

µ + λ̂Ππ~π
µνσµν ,

τ̂n~̇n
〈µ〉 + ~nµ = ~κIµ − τ̂n~nνωνµ − δ̂nn~nµθ + ˆ̀

nπ∆µν∂λ~π
λ
ν − ˆ̀

nΠ∇µ~Π− τ̂nπ~π µνFν
+ τ̂nΠ

~ΠF µ − λ̂nn~nνσµν − λ̂nπ~π µνIν + λ̂nΠ
~ΠIµ ,

τ̂π~̇π
〈µν〉 + ~π µν = 2~ησµν + 2τ̂π~π

〈µ
λ ω ν〉λ − δ̂ππ~π µνθ − τ̂ππ~π λ〈µσ ν〉λ − τ̂πn~n

〈µF ν〉

+ ˆ̀
πn∇〈µ~nν〉 + λ̂πn~n

〈µ I ν〉 + λ̂πΠ
~Πσµν , (5.67)

where we defined the vectors

~Π ≡
(

Π
ρ3

)
, ~nµ ≡

(
nµ

ρµ2

)
, ~π µν ≡

(
πµν

ρµν1

)
. (5.68)

In order to obtain the above equations, all covariant time derivatives of α0, β0, and uµ

were replaced by spatial gradients of fluid-dynamical variables using the conservation laws
in the form shown in Eqs. (4.25), (4.26), and (4.27).

In this approximation, RTRFD becomes a theory with 23 dynamical variables while,
in the previous approximation, i.e., Eqs. (5.36) – (5.38), there were only 14 dynam-
ical variables. These equations of motion are hyperbolic and neglect terms of order
O(R−1

i Kn2,Kn3,R−2
i ), in contrast to Eqs. (5.36) – (5.38) that become hyperbolic by ne-

glecting terms of O(Kn2). Above, τ̂Π, τ̂n, τ̂π, ˆ̀
Πn, ˆ̀

nΠ, ˆ̀
nπ, ˆ̀

πn, δ̂ΠΠ, δ̂nn, δ̂ππ, τ̂Πn, τ̂nπ,

τ̂nΠ, τ̂ππ, τ̂πn, λ̂Πn, λ̂Ππ, λ̂nn, λ̂nΠ, λ̂nπ, λ̂πn, and λ̂πΠ are 2× 2 matrices, while ~ζ, ~κ, and ~η
are two-component vectors.

As happened before, even though closed in terms of 23 moments, the transport co-
efficients will depend on all the moments of the distribution function. The microscopic
formulas for these transport coefficients were computed for a gas of massless particles and
are shown in App. 5.12. For a gas of classical particles with a constant cross section σ,
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the values for the diffusion and viscosity coefficients, ~κ and ~η, and for the relaxation-time
matrices, τ̂n and τ̂π, are,

~κ
λn0

=

(
0.1596

−2.3616/β2
0

)
,

~η

λP0

=

(
1.268

6.929/β0

)
,

τ̂n
λ

=

(
1.295 −0.053β2

0

5.18/β2
0 2.787

)
,

τ̂π
λ

=

(
0.912 0.136β0

−3.647/β0 2.456

)
. (5.69)

The transport coefficients of the nonlinear terms in the equation of motion for ~nµ are

δ̂nn
λ

=

(
1.295 −0.0883β2

0

5.18/β2
0 4.645

)
,

λ̂nn
λ

=

(
0.524 −0.0341β2

0

2.096/β2
0 2.863

)
,

λ̂nπ
λ

=

(
0.1677β0 −0.0288β2

0

0.6708/β0 −0.1147

)
,

τ̂nπ
λ

=
1

4P0

(
0 0.0973β2

0

0 −2.6106

)
,

ˆ̀
nπ

λ
=

(
−0.4723β0 0.0973β2

0

13.111/β0 −2.611

)
, (5.70)

while those in the equation of motion for ~π µν are

δ̂ππ
λ

= −4

3

(
0.912 0.17β0

−3.647/β0 3.0698

)
,

τ̂ππ
λ

=

(
1.5688 0.2261β0

−6.2751/β0 5.0956

)
, (5.71)

τ̂πn
λ

=
1

P0

(
0.2228/β0 0.0714β0

0.8913/β2
0 1.5144

)
,

ˆ̀
πn

λ
=

(
0.2228/β0 0.0476β0

0.8913/β2
0 1.0096

)
,

λ̂πn
λ

=

(
0.1186/β0 0.0084β0

−0.4744/β2
0 −0.0338

)
. (5.72)

In the massless limit, the scalar moments become less important (Π is exactly zero and
ρ3 is small) and, for this reason, we did not compute the microscopic formulas nor the
transport coefficients associated with these moments. These transport coefficients were
computed including a total of 41 moments, as was done for the transport coefficients of
the terms J µ and J µν in the last section.

As already mentioned, this approach increases the domain of validity of the equations of
motion without making them parabolic. However, this does not solve the intrinsic problem
of the coarse-graining procedure: if one attempts to go to an even higher order in Kn, the
equations become once more parabolic. This can be solved in a similar fashion, by again
increasing the number of dynamical variables describing the system. However, a complete
and causal description of the system can only be obtained by the microscopic theory itself,
i.e., by solving the Boltzmann equation or, equivalently, considering an infinite number
of moments.

5.7 Comparisons with microscopic theory

In the last sections, a systematic derivation of transient relativistic fluid dynamics from the
Boltzmann equation was introduced. The main difference between Israel-Stewart theory
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and the theory derived in the last chapter is that the latter does not truncate the moment
expansion of the single-particle distribution function. Instead, dynamical equations for
all its moments are considered and solved by separating the slowest microscopic time
scale from the faster ones. Then, the resulting fluid-dynamical equations are truncated
according to a systematic power-counting scheme using the inverse Reynolds number
R−1 ∼ |nµ| /n ∼ |πµν | /P0 and the Knudsen number Kn = λ/L, with λ being the mean
free path and L a characteristic macroscopic distance scale, e.g., L−1 ∼ ∂µu

µ. The values
of the transport coefficients of fluid dynamics are obtained by resumming the contributions
from all moments of the single-particle distribution function, similar to what happens in
the Chapman-Enskog expansion [16]. This theory was referred to as resummed transient
relativistic fluid dynamics (RTRFD).

In this section, we reproduce the findings of Ref. [17] and we test the validity of RTRFD
by comparing it to solutions of the relativistic Boltzmann equation, as was also previously
done in Refs. [10, 18, 19, 20]. We then demonstrate that this method is able to handle prob-
lems with strong initial gradients in pressure or particle-number density. This resolves the
differences between the solution of Israel-Stewart theory and of the Boltzmann equation
observed in Ref. [20]. We conclude that these differences were caused by the uncontrolled
truncation procedure of the expansion of the single-particle distribution function in terms
of Lorentz tensors in 4-momentum as employed in Israel-Stewart theory.

5.7.1 Stationary shock solutions

We consider a (3+1)-dimensional gas of classical massless particles with a constant cross
section σ. For the sake of simplicity, the distribution of particles is assumed to be ho-
mogeneous in the (y, z)-plane, being allowed to vary only in the longitudinal x-direction.
This effectively leads to a (1+1)-dimensional problem. We consider two different types of
initial conditions:

In case I, the system is initialized with a homogeneous fugacity distribution, λ ≡
eα0 ≡ 1, but with an inhomogeneous pressure profile in the longitudinal direction, i.e., the
system is in chemical, but not mechanical, equilibrium. The pressure profile is constructed
by smoothly connecting two temperature states, T (−∞) = 0.4 GeV (the temperature at
x → −∞) and T (+∞) = 0.25 GeV (the temperature at x → ∞) using a Woods-Saxon
parametrization with a thickness parameter D = 0.3 fm. In this scheme, by taking the
limit D → 0, we obtain the pressure profile of the Riemann problem.

In case II, the pressure is assumed to be homogeneous, i.e., the system is initially in
mechanical equilibrium, with a value of P0 = ddofT

4(−∞)/π2 (the degeneracy factor is
taken to be ddof = 16, as appropriate for a gas of gluons, the gauge bosons of the theory of
the strong interaction, quantum chromodynamics, and T (−∞) = 0.4 GeV). On the other
hand, the system is not in chemical equilibrium and the fugacity distribution is obtained
by smoothly connecting two fugacity states, λ(−∞) = 1 (the fugacity at x → −∞) and
λ(+∞) = 0.2 (the fugacity at x → ∞) using a Woods-Saxon parametrization with a
thickness parameter D = 0.3 fm.

In both cases, matter is initialized in local thermodynamic equilibrium, i.e., with all
dissipative currents and eigenmodes of the Boltzmann equation set to zero, and at rest,
i.e., with a vanishing collective velocity uµ = 0. These initial conditions are shown in Fig.
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5.1.
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Figure 5.1: Initial conditions for cases I and II. Figure taken from Ref. [17].

In both cases, we consider two exemplary values for the cross section, σ = 2 and
8 mb, and consider the solutions after the system has evolved for 6 fm in time. We
compare the solution of the Boltzmann equation with that of traditional Israel-Stewart
theory (including terms omitted in the original work [5, 11] but quoted in Ref. [21]),
as well as with RTRFD at various levels of approximation. Equations (5.36) – (5.38)
contain 13 moments as independent dynamical variables (14, if we include the bulk-
viscous pressure). The calculation of the transport coefficients in these equations can be
done with increasing accuracy, as more irreducible moments are considered in the moment
expansion. The lowest possible accuracy is reached if no more than the original 13 (14, in
the case of non-vanishing bulk-viscous pressure) irreducible moments are considered for
the calculation of the transport coefficients. At the next level, we include one more set
of irreducible moments of tensor-rank one and two (and one more scalar moment in the
case of non-vanishing bulk viscous pressure), which leads to a total of 21 (23, in the case
of non-vanishing bulk-viscous pressure) irreducible moments. In this way, the number of
irreducible moments entering the transport coefficients increases by 8 (9) at each successive
level of approximation. For the purpose of this comparison, we found that going to the
third level of iteration, i.e., considering 13 + 8× 3 = 37 moments (14 + 9× 3 = 41 in the
case of non-vanishing bulk-viscous pressure) is sufficient to reach the desired accuracy in
the values of the transport coefficients. In the following, we shall compare RTRFD with
13 dynamical degrees of freedom and with the transport coefficients computed with 13
and with 37 moments. We shall term these variants of RTRFD “13/13” and “13/37”,
respectively. In addition, we also solve Eqs. (5.67). These contain 21 dynamical degrees
of freedom. We compute the corresponding transport coefficients using 37 moments. We
shall refer to this variant of RTRFD as “21/37”. In the following figures, the numerical
solutions of the Boltzmann equation is always displayed by open dots, the results of
Israel-Stewart theory by black dash-dotted lines, the solution of RTRFD “13/13” by
green dashed lines, that of RTRFD “13/37” by blue dotted lines, and that of RTRFD
“21/37” by solid red curves.

In Fig. 5.2 we show the fugacity (top) and thermodynamic pressure (bottom) and in
Fig. 5.3 the heat flow qµ ≡ −(ε+P0)nµ/n (top) and shear-stress tensor (bottom) for case
I. The Boltzmann equation and the fluid-dynamical theories were solved for σ = 2 mb
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(shown in the left panels of each figure) and for σ = 8 mb (shown in the right panels).
For σ = 8 mb, the thermodynamic pressure and shear-stress tensor computed in all fluid-
dynamical theories are in good agreement with the numerical solutions of the Boltzmann
equation. As we decrease the cross section we expect the agreement between macroscopic
and microscopic theory to become worse. This explains why, for σ = 2 mb, the pressure
and shear-stress tensor computed within fluid-dynamical theories deviate more strongly
from those computed via the microscopic theory. Nevertheless, compared to the fugacity
and heat-flow profiles, the agreement is not too bad, even for the smaller value of the
cross section.

The initial pressure gradient in case I drives, via conservation of momentum, the cre-
ation of large velocity gradients. On the other hand, the gradient of fugacity is ini-
tially zero and turns out to remain small throughout the evolution. In this situation,
higher-order terms involving gradients of velocity and of the shear-stress tensor, e.g.
κ6∆µ

λ∂νσ
λν ⊂ Kµ and `nπ∆µν∇λπ

λ
ν ⊂ J µ in the particle-diffusion equation (5.37), be-

come of the same order as the respective (first-order) Navier-Stokes term κIµ. Therefore,
if terms of this type are not properly taken into account, we expect large deviations from
the solution of the Boltzmann equation. This can be seen in Figs. 5.2 and 5.3 when
comparing Israel-Stewart theory, RTRFD “13/13”, as well as RTRFD “13/37” with the
Boltzmann result. In all of these variants, the parabolic term ∼ κ6 is either absent
(Israel-Stewart theory and RTRFD “13/13”) or has to be dismissed (RTRFD “13/37”)
for reasons of causality. In addition, Israel-Stewart theory and RTRFD “13/13” do not
have the correct value for `nπ, because we did not include a sufficiently large number of
irreducible moments in its computation. Although RTRFD “13/37” features (within the
desired accuracy) the correct value for this transport coefficient (as well as for κ6), it
does even worse in describing the fugacity and heat-flow profiles than the previous two
theories. This is because the term ∼ κ6 could not be taken into account for reasons
of causality, although it is of the same order of magnitude as the term ∼ `nπ. These
problems of fluid-dynamical theories with only 13 dynamical variables are resolved by
RTRFD “21/37” which is the only fluid-dynamical theory considered here that contains
all contributions of second-order in the Knudsen number in a hyperbolic fashion.

In Fig. 5.4 we show the fugacity (top) and thermodynamic pressure (bottom) and in
Fig. 5.5 the heat-flow (top) and shear-stress tensor profiles (bottom) for case II. As before,
the Boltzmann equation and the fluid-dynamical theories considered were solved for σ = 2
mb (shown in the left panels) and for σ = 8 mb (shown in the right panels). Again, we
expect, and see, better agreement between fluid dynamics and the Boltzmann equation
for the larger value of the cross section. While the fugacity profiles are in good agreement
with the solution of the Boltzmann equation for all fluid-dynamical theories and both
values of the cross section, the heat flow is not well described in Israel-Stewart theory
and in RTRFD “13/13”: Israel-Stewart theory predicts values for the heat flow which
are smaller in magnitude than the Boltzmann equation, while RTRFD “13/13” predicts
larger values, even for σ = 8 mb. On the other hand, both RTRFD “13/37” and RTRFD
“21/37” describe the heat flow very well or even perfectly, respectively, for both values
of the cross section. The reason is that the diffusion coefficient κ has the correct value
in these theories (while it deviates by ∼ 30% in both Israel-Stewart theory and RTRFD
“13/13”).
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Figure 5.2: Fugacity and pressure profiles at t = 6 fm for case I, for σ = 2 mb (left panels)
and σ = 8 mb (right panels). Figure taken from Ref. [17].

Since in case II the initial pressure gradient is zero and turns out to remain small
throughout the evolution, the velocity gradients remain small as well. In this situation,
it is important to include higher-order terms that couple the shear-stress tensor to heat
flow. This is the reason why the solutions of Israel-Stewart theory and RTRFD “13/13”
(where these higher-order terms vanish in the massless limit) are not in good agreement
with that of the Boltzmann equation for the thermodynamic pressure and the shear-stress
tensor, for both values of the cross section. On the other hand, RTRFD “13/37” does a
better job in matching the Boltzmann equation. It is not perfect, because the higher-order
terms ∼ η5 and ∼ η8 were dropped. The best agreement is, again, found within RTRFD
“21/37” where all second-order terms in the Knudsen number are taken into account.

5.8 Summary

In this chapter we have presented a general and consistent derivation of relativistic
fluid dynamics from the Boltzmann equation using the method of moments. The main
difference of our approach, termed Resummed Transient Relativistic Fluid Dy-
namics (RTRFD), to Israel-Stewart theory is that we did not close the fluid-dynamical
equations of motion by truncating the expansion of the distribution function. Instead, we
kept all terms in the moment expansion and truncated the exact equations of motion ac-
cording to a power-counting scheme in Knudsen and inverse Reynolds numbers.
Contrary to many calculations, we did not assume that the inverse Reynolds and Knudsen
numbers are of the same order. As a matter of fact, in order to obtain relaxation-type
equations, we had to explicitly include the slowest microscopic time scales, which are
shown to be the characteristic times over which dissipative currents relax towards their

130



5.8 Summary

-0.05

0.00

0.05

0.10

0.15

Ι

σ = 2 mb

(qz/P0)

IS

13/13

13/37

21/37

BAMPS

σ = 8 mb

(qz/P0) × 2

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

-6 -4 -2 0 2 4 6
x [fm]

(π/P0)

-6 -4 -2 0 2 4 6
x [fm]

(π/P0) × 2

Figure 5.3: Shear-stress tensor and heat-flow profiles at t = 6 fm for case I, for σ = 2 mb
(left panels) and σ = 8 mb (right panels). Figure taken from Ref. [17].

asymptotic Navier-Stokes solutions. Thus, Navier-Stokes theory, or the Chapman-Enskog
expansion, is already included in our formulation as an asymptotic limit of the dynamical
equations.

We concluded that the equations of motion can be closed in terms of only 14 dynam-
ical variables, as long as we only keep terms of second order in Knudsen and/or inverse
Reynolds number. Even though the equations of motion are closed in terms of these
14 fields, the transport coefficients carry information about all moments of the distri-
bution function (all different relaxation scales of the irreducible moments). The bulk-
viscosity, particle-diffusion, and shear-viscosity coefficients agree with the values obtained
via Chapman-Enskog theory. We then showed how to use this formalism to derive equa-
tions of motion that are hyperbolic and, at the same time, include terms up to second
order in the Knudsen number.

Finally, we compared the derived equations of motion of RTRFD at various levels
of approximation with numerical solutions of the Boltzmann equation for two different
types of shock solution (labeled case I and II). The initial conditions, cases I and II, were
chosen in such a way that considerably different spatial profiles are generated throughout
the fluid-dynamical evolution. In case I, the pressure gradient is initially large, which
gives rise to large velocity gradients in the later stages of the evolution. This means that,
in case I, the shear-stress tensor is mainly generated by its corresponding Navier-Stokes
term, i.e., by gradients of velocity. On the other hand, the fugacity gradient is initially zero
in case I, and remains relatively small throughout the evolution of the fluid. Therefore, in
case I the heat flow is not mainly created by its Navier-Stokes term, i.e., by the gradient
of fugacity, but by the coupling term to the shear tensor and shear-stress tensor, i.e.,
the terms ∆µν∇λπ

λ
ν and ∆µν∇λσ

λ
ν in Eq. (5.37). Therefore, in this case the higher-order
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Figure 5.4: Fugacity and thermodynamic pressure profiles at t = 6 fm for case II, for
σ = 2 mb (left panels) and σ = 8 mb (right panels). Figure taken from Ref.
[17].

terms in Knudsen number must be included and one really needs to solve the hyperbolic
equations derived in this section to obtain a good agreement. The fact that Israel-Stewart
theory is always deviating from the microscopic theory when it concerns heat flow means
that it does not predict correctly the terms of order one and two in Knudsen number.
On the other hand, in RTRFD “13/37” and RTRFD “21/37” all transport coefficients
are computed with a sufficiently large number of irreducible moments. This guarantees
that all terms of the desired order are included and is the reason for the better agreement
of these fluid-dynamical theories with the microscopic theory. The reason why RTRFD
“13/37” fails in certain situations is that important terms have to be neglected in order
to preserve hyperbolicity and causality.

In case II, the fugacity gradient is initially large while the pressure gradient is zero.
This means that the heat flow originates mainly from its Navier-Stokes term, while the
shear-tress tensor originates mainly from its coupling to heat flow, i.e., the terms ∇<µnν>,
∇<µIν>, I<µIν>, and n<µIν> in Eq. (5.38). The fact that the heat flow calculated from
Israel-Stewart theory deviates from the solution given by the microscopic theory even
in this case is evidence that the Navier-Stokes term of this theory does not contain the
correct transport coefficient. The coupling of the shear-stress tensor with the heat flow
in Israel-Stewart theory is also not correctly taken into account.

In conclusion, the resummation of irreducible moments for the computation of
the transport coefficients is essential to obtain a good agreement with the microscopic
theory. It provides not only the correct values for the shear-viscosity and heat-conduction
coefficients, but also for the transport coefficients that couple the respective dissipative
currents. Moreover, in situations where higher-order terms are important, one has to
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Figure 5.5: Shear-stress tensor and heat-flow profiles at t = 6 fm for case II, for σ = 2
mb (left panels) and σ = 8 mb (right panels). Figure taken from Ref. [17].

make sure to include them in a hyperbolic way, and not simply drop relevant contributions
because they are parabolic. These two factors resolve differences between the solution of
Israel-Stewart theory and of the Boltzmann equation observed in Ref. [20].

As expected, and explicitly demonstrated in this chapter, the agreement between solu-
tions of RTRFD and the Boltzmann equation depends on the value of the cross section σ.
For the cases considered here, we obtain a good agreement for σ = 8 mb, while for σ = 2
mb we start to notice small deviations. In order to improve the agreement for smaller
values of the cross section, we would have to include more moments of the Boltzmann
equation to describe the state of the system, i.e., such moments would have to contribute
not only to the values of the transport coefficients but also as independent dynamical
variables.
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5.9 Appendix 1: Transport coefficients in Eq. (5.44)

In this appendix we list all transport coefficients appearing in Eq. (5.44). The transport
coefficients in the equation for the bulk-viscous pressure are

`Πn = −m
2

3

(
γ

(1)
1 τ

(0)
00 −

N0∑
r=0, 6=1,2

τ
(0)
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G3r

D20

+
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τ
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(1)
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, (5.73)
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where h0 = (ε0 + P0)/n0 is the enthalpy per particle.
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The transport coefficients in the equation for the particle-diffusion current are
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(r + 1) τ
(1)
0,r+2Ω

(1)
r0 +

1

3

N1∑
r=2

(r + 3) τ
(1)
0r Ω

(1)
r0

+

N1∑
r=2

τ
(1)
0r

[
(ε0 + P0) J20 − n0J30

D20

∂Ω
(1)
r0

∂α0

+
(ε0 + P0) J10 − n0J20

D20

∂Ω
(1)
r0

∂β0

]
, (5.78)

`nΠ =

(
1

h0

− γ(0)
1

)
τ

(1)
00 +

N1−2∑
r=0

τ
(1)
0,r+2

β0Jr+4,1

ε0 + P0

+
1

m2

N1−2∑
r=0

τ
(1)
0,r+2Ω

(0)
r+3,0

−
N1−4∑
r=0

τ
(1)
0,r+4Ω

(0)
r+3,0 , (5.79)

τnΠ =
1

ε0 + P0

((
1

h0

− ∂γ
(0)
1

∂ ln β0

)
τ

(1)
00 −

N1−4∑
r=0

τ
(1)
0,r+4

[
(r + 4) Ω

(0)
r+3,0 +

∂Ω
(0)
r+3,0

∂ ln β0

]

+

N1−2∑
r=0

τ
(1)
0,r+2

{
β0Jr+4,1

ε0 + P0

+
1

m2

[
(r + 5) Ω

(0)
r+3,0 +

∂Ω
(0)
r+3,0

∂ ln β0

]})
, (5.80)

`nπ =

(
1

h0

− γ(2)
1

)
τ

(1)
00 +

N1−2∑
r=0

τ
(1)
0,r+2

(
β0Jr+4,1

ε0 + P0

− Ω
(2)
r+1,0

)
, (5.81)

τnπ =
1

ε0 + P0

{(
1

h0

− ∂γ
(2)
1

∂ ln β0

)
τ

(1)
00

+

N1−2∑
r=0

τ
(1)
0,r+2

[
β0Jr+4,1

ε0 + P0

−
∂Ω

(2)
r+1,0

∂ ln β0

− (r + 2)Ω
(2)
r+1,0

]}
, (5.82)

λnn =
1

5

(
3 + 2m2γ

(1)
2

)
τ

(1)
00 −

2

5
m2

N1−2∑
r=0,r 6=1

(r + 1) τ
(1)
0,r+2Ω

(1)
r0 +

1

5

N1∑
r=2

(2r + 3) τ
(1)
0r Ω

(1)
r0 ,

(5.83)

λnΠ = τ
(1)
00

(
1

h0

∂γ
(0)
1

∂β0

+
∂γ

(0)
1

∂α0

)
− 1

m2

N1−2∑
r=0

τ
(1)
0,r+2

(
1

h0

∂Ω
(0)
r+3,0

∂β0

+
∂Ω

(0)
r+3,0

∂α0

)

+

N1−4∑
r=0

τ
(1)
0,r+4

(
1

h0

∂Ω
(0)
r+3,0

∂β0

+
∂Ω

(0)
r+3,0

∂α0

)
, (5.84)

λnπ =

(
1

h0

∂γ
(2)
1

∂β0

+
∂γ

(2)
1

∂α0

)
τ

(1)
00 +

N1−2∑
r=0

τ
(1)
0,r+2

(
1

h0

∂Ω
(2)
r+1,0

∂β0

+
∂Ω

(2)
r+1,0

∂α0

)
. (5.85)
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The transport coefficients in the equation for the shear-stress tensor are

δππ =
1

3
m2γ

(2)
2 τ

(2)
00 +

1

3

N2∑
r=0

(r + 4) τ
(2)
0r Ω

(2)
r0 −

1

3
m2

N2−2∑
r=0

(r + 1) τ
(2)
0,r+2Ω

(2)
r0

+

N2∑
r=0

τ
(2)
0r

[
(ε0 + P0) J10 − n0J20

D20

∂Ω
(2)
r0

∂β0

+
(ε0 + P0) J20 − n0J30

D20

∂Ω
(2)
r0

∂α0

]
, (5.86)

τππ =
2

7

N2∑
r=0

(2r + 5) τ
(2)
0r Ω

(2)
r0 +

4

7
m2γ

(2)
2 τ

(2)
00 −

4

7
m2

N2−2∑
r=0

(r + 1) τ
(2)
0,r+2Ω

(2)
r0 , (5.87)

λπΠ =
6

5
τ

(2)
00 +

2

5
m2γ

(0)
2 τ

(2)
00 −

2

5m2

N2−1∑
r=0

(r + 5) τ
(2)
0,r+1Ω

(0)
r+3,0

+
2

5

N2∑
r=3

(2r + 3) τ
(2)
0r Ω

(0)
r0 −

2

5
m2

N2−2∑
r=0,6=1,2

(r + 1) τ
(2)
0,r+2Ω

(0)
r0 , (5.88)

τπn =
2

5(ε0 + P0)

{
−m2τ

(2)
00

∂γ
(1)
1

∂ ln β0

−m2

N2−3∑
r=0

τ
(2)
0,r+3

∂Ω
(1)
r+2,0

∂ ln β0

−m2

N2−1∑
r=0, 6=1

(r + 1) τ
(2)
0,r+1Ω

(1)
r0 +

N2−1∑
r=0

τ
(2)
0,r+1

[
(r + 6) Ω

(1)
r+2,0 +

∂Ω
(1)
r+2,0

∂ ln β0

]}
, (5.89)

`πn = −2

5
m2γ

(1)
1 τ

(2)
00 +

2

5

N2−1∑
r=0

τ
(2)
0,r+1Ω

(1)
r+2,0 −

2

5
m2

N2−1∑
r=0,6=1

τ
(2)
0,r+1Ω

(1)
r0 , (5.90)

λπn = −2

5
m2τ

(2)
00

(
1

h0

∂γ
(1)
1

∂β0

+
∂γ

(1)
1

∂α0

)
+

2

5

N2−1∑
r=0

τ
(2)
0,r+1

(
1

h0

∂Ω
(1)
r+2,0

∂β0

+
∂Ω

(1)
r+2,0

∂α0

)

− 2

5
m2

N2−3∑
r=0

τ
(2)
0,r+3

(
1

h0

∂Ω
(1)
r+2,0

∂β0

+
∂Ω

(1)
r+2,0

∂α0

)
. (5.91)

5.10 Appendix 2: Calculation of the collision integrals

In this appendix, we calculate the collision integrals (4.48) for a classical gas, i.e., f̃0k = 1,
of hard spheres in the ultrarelativistic limit, mβ0 � 1. Then, Eq. (4.48) becomes

A(`)
rn =

1

ν (2`+ 1)

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′E

r−1
k k〈ν1 · · · k ν`〉

×
(
H(`)

knk〈ν1 · · · kν`〉 +H(`)
k′nk

′
〈ν1 · · · k

′
ν`〉 −H

(`)
pnp〈ν1 · · · pν`〉 −H

(`)
p′np

′
〈ν1 · · · p

′
ν`〉

)
.

(5.92)

The functions H(`)
kn were defined in Eq. (4.14). The transition rate Wkk′→pp′ is written in

terms of the differential cross section σ(s,Θ) as

Wkk′→pp′ = sσ(s,Θs) (2π)6 δ(4) (kµ + k′µ − pµ − p′µ) . (5.93)
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The variable s and Θs are defined as

s = (k + k′)
2
, cos Θs =

(k − k′)µ (p− p′)µ

(k − k′)2 . (5.94)

We further define the total cross section as the integral

σ(s) =
2π

ν

∫
dΘs sin Θs σ(s,Θs) . (5.95)

In order to calculate A(`)
rn it is convenient to first define the tensors

Xn
µνγ1···γm =

1

ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′E

n
kkµkν

×
(
kγ1 · · · kγm + k′γ1 · · · k

′
γm − pγ1 · · · pγm − p

′
γ1
· · · p′γm

)
. (5.96)

The collision integrals A(`)
rn can always be expressed as linear combinations of contrac-

tions/projections of Xn
µνγ1···γm . For the purpose of this appendix, we only need Xn

µνγ1···γm
for m = 2 and 3. For now we concentrate on calculating these integrals. We separate
Xn
µνγ1···γm as

Xn
µνγ1···γm = Anµνγ1···γm +Bn

µνγ1···γm , (5.97)

with

Anµνγ1···γm =
1

ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′E

n
k kµkν

(
kγ1 · · · kγm + k′γ1 · · · k

′
γm

)
,

Bn
µνγ1···γm = −1

ν

∫
dKdK ′dPdP ′Wkk′→pp′f0kf0k′E

n
k kµkν

(
pγ1 · · · pγm + p′γ1 · · · p

′
γm

)
.

(5.98)

The dPdP ′ integration in the first tensor, Anµνγ1···γm , can be immediately performed and
written in terms of the total cross section, σ(s), as

Anµνγ1···γm =

∫
dKdK ′f0kf0k′E

n
kkµkν

(
kγ1 · · · kγm + k′γ1 · · · k

′
γm

) s
2
σ (s) . (5.99)

The calculation of the second tensor, Bn
µνγ1...γm

, is cumbersome. First, we write it in the
general form

Bn
µνγ1···γm = −

∫
dKdK ′f0kf0k′E

n
kkµkνΘγ1···γm , (5.100)

where we introduced the tensor

Θγ1···γm =
2

ν

∫
dPdP ′Wkk′→pp′p

γ1 · · · pγm . (5.101)

The integral Θγ1···γm is an m-th rank tensor. For isotropic cross sections, this tensor can
only depend on the normalized total momentum of the collision P̃ µ

T ≡ s−1/2 (kµ + k′µ) ≡
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s−1/2P µ
T . Thus, the tensor structure of Θγ1···γm must be constructed from combinations of

P̃ µ
T and the projection operator orthogonal to P̃ µ

T , ∆µν
P = gµν − P̃ µ

T P̃
ν
T . In general,

Θγ1···γm =

[m/2]∑
q=0

(−1)q amqCmqCγ1···γm
q , (5.102)

where we defined

amq =
m!

(m− 2q)!2q!
(2q − 1)!! ,

Cγ1···γm
q = ∆

(γ1γ2
P · · ·∆γ2q−1γ2q

P P̃
γ2q+1

T · · · P̃ γm)
T ,

Cmq =
2

ν (2q + 1)!!

∫
dPdP ′Wkk′→pp′

(
P̃ µ
T pµ

)m−2q (
−∆αβ

P pαpβ

)q
. (5.103)

As usual, the parentheses () around the indices denote the symmetrization of the tensor.
For example,

Θµν = C20P̃TµP̃Tν − C21∆Pµν ,

Θµνλ = C30P̃TµP̃TνP̃Tλ − C31

(
∆PµνP̃Tλ + ∆PµλP̃Tν + ∆PνλP̃Tµ

)
. (5.104)

The integrals Cnq are scalars and can be computed in any frame. It is most convenient
to calculate them in the center-of-momentum frame, where, P̃ µ

T = (1, 0, 0, 0) and ∆µν
P =

diag (0,−1,−1,−1). Then, it is straightforward to prove that

Cnq =
σ (s)

2n (2q + 1)!!
s(n−2q+1)/2

(
s− 4m2

)(2q+1)/2 −→
m→0

σ (s)

2n (2q + 1)!!
s(n+2)/2 . (5.105)

In the massless limit, the tensors Xn
µναβ and Xn

µναβγ become

Xn
µναβ =

1

2

∫
dKdK ′f0kf0k′E

n
kkµkν sσ (s)

(
kαkβ + k′αk

′
β −

2

3
PTαPTβ +

s

6
gαβ

)
,

Xn
µναβγ =

1

2

∫
dKdK ′f0kf0k′E

n
kkµkν sσ (s)

[
kαkβkγ + k′αk

′
βk
′
γ

−1

2
PTαPTβPTγ +

s

12
(gαβPTγ + gαγPTβ + gβγPTα)

]
, (5.106)

where we used that, in the massless limit, s = 2kλk′λ.

5.10.1 Particle-diffusion current

For the collision integrals related to the particle-number diffusion current, we need the
following two contractions

∆µαuνuβXn
µναβ = −σ (I10In+5,1 − 4I21In+4,1 − I31In+3,1) ,

∆µαuνuβuγXn
µναβγ = −σ

2
(3I10In+6,1 − 11I21In+5,1 − 5I31In+4,1 − 3I41In+3,1) . (5.107)
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5.10 Appendix 2: Calculation of the collision integrals

To obtain the above relations, we used the definitions (4.31) and Eq. (4.46). In the
massless and classical limits the integrals Inq = Jnq can be calculated analytically

Inq = ddof
eα0

(2q + 1)!!

1

2π2

(n+ 1)!

βn+2
0

=
(n+ 1)!

(2q + 1)!!

P0

2βn−2
0

. (5.108)

Then,

∆µαuνuβX−2
µναβ =

4

3
n0σ

P0

β0

,

∆µαuνuβX0
µναβ = −24n0σ

P0

β3
0

,

∆µαuνuβuγX−2
µναβγ = 12n0σ

P0

β2
0

,

∆µαuνuβuγX0
µναβγ = −280n0σ

P0

β4
0

. (5.109)

As a consistency check, we confirm that ∆µαuνuβX−1
µναβ = ∆µαuνuβuγX−1

µναβγ = 0.

The components of A(1) change according to the number of moments included. In the
14-moment approximation, using Eqs. (4.14) and (4.5), we obtain

A(1)
00 =

W (1)

3
a

(1)
10 a

(1)
11 ∆µαuνuβX−2

µναβ =
4

9
n0σ . (5.110)

In the 23-moment approximation, e.g., considering three polynomials in the expansion
(5.1) for ` = 1,

A(1)
r0 =

W (1)

3

[(
a

(1)
10 a

(1)
11 + a

(1)
20 a

(1)
21

)
∆µαuνuβXr−2

µναβ + a
(1)
20 a

(1)
22 ∆µαuνuβuγXr−2

µναβγ

]
,

A(1)
r2 =

W (1)

3

(
a

(1)
22 a

(1)
21 ∆µαuνuβXr−2

µναβ + a
(1)
22 a

(1)
22 ∆µαuνuβuγXr−2

µναβγ

)
. (5.111)

Then, using the results from App. 4.8 for the coefficients a
(`)
nq together with Eqs. (5.108)

and (5.109), we obtain

A(1)
00 =

2

3
n0σ , A(1)

02 =
β2

0

90
n0σ ,

A(1)
20 = − 4

3β2
0

n0σ , A(1)
22 =

1

3
n0σ . (5.112)

5.10.2 Shear-stress tensor

For the collision integrals related to the shear-stress tensor, we need the following two
contractions

∆µναβXn
µναβ =

10

3
σ (I10In+5,2 + 4I21In+4,2) ,

∆µναβuγXn
µναβγ = 5σ (I10In+6,2 − I21In+5,2 + 2I31In+4,2) . (5.113)
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In order to obtain the above relations, we used the definitions (4.31) and Eq. (4.46). Using
Eq. (5.108),

∆µναβX−1
µναβ = 24σ

P 2
0

β0

,

∆µναβX0
µναβ =

400

3
σ
P 2

0

β2
0

,

∆µναβuγ1X−1
µναβγ = 132σ

P 2
0

β2
0

,

∆µναβuγX0
µναβγ = 880σ

P 2
0

β3
0

. (5.114)

The components of A(2) change according to the number of moments included. In the
14-moment approximation, using Eqs. (4.14) and (4.5), we obtain

A(2)
00 =

W (2)

10
∆µναβX−1

µναβ =
3

5
n0σ , (5.115)

where we used Eqs. (5.108) and (5.114), together with the results from App. 4.8.
In the 23-moment approximation, e.g., considering two polynomials in the expansion

(5.1), for ` = 2,

A(2)
r0 =

W (2)

10

(
1 + a

(2)
10 a

(2)
10

)
∆µναβXr−1

µναβ +
W (2)

10
a

(2)
10 a

(2)
11 ∆µναβuγXr−1

µναβγ ,

A(2)
r1 =

W (2)

10
a

(2)
11 a

(2)
10 ∆µναβXr−1

µναβ +
W (2)

10
a

(2)
11 a

(2)
11 ∆µναβuγXr−1

µναβγ . (5.116)

Then, using once more the results from App. 4.8 and Eqs. (5.108) and (5.114), we obtain

A(2)
00 =

9

10
n0σ , A(2)

01 = − 1

20
β0n0σ ,

A(2)
10 =

4

3β0

n0σ , A(2)
11 =

1

3
n0σ . (5.117)

We did not calculate the coefficients related to the bulk-viscous pressure, since this quan-
tity vanishes in the massless limit. Also, if the mass was taken to be finite, some of the
steps taken in this appendix would not be possible.

5.11 Appendix 3: Calculation of γ
(2)
1

In this appendix we compute the quantity γ
(2)
1 in the 14-moment approximation and the

23-moment approximation. Among all the γ
(`)
i appearing in the transport coefficients

listed in App. 5.9 this is the only one that survives in the ultrarelativistic limit, all the
others are accompanied by factors of m2 or couple to Π, which vanishes in this limit. The
variable γ

(2)
1 was defined in the main text,

γ
(2)
1 =

N2∑
n=0

F (2)
rn Ω

(2)
n0 . (5.118)
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(2)
1

The first step is to compute the thermodynamic integral

F (`)
rn =

`!

(2`+ 1)!!

∫
dK f0kf̃0kE

−r
k H

(`)
kn

(
∆αβkαkβ

)`
. (5.119)

5.11.1 14-moment approximation

In this case, N1 = 1 and N2 = 0, and

γ
(2)
1 = F (2)

10 . (5.120)

Also, in the 14-moment approximation,

H(2)
k0 ≡

W (2)

2!
a

(2)
00 P

(2)
k0 =

W (2)

2!
. (5.121)

In the massless and classical limit,

H(2)
k0 =

β2
0

8P0

, (5.122)

and finally

γ
(2)
1 =

β2
0

4P0

1

5!!

∫
dK f0kE

−1
k

(
∆αβkαkβ

)2
=
β0

5
. (5.123)

5.11.2 23-moment approximation

In this case, N1 = 2 and N2 = 1, and

γ
(2)
1 = F (2)

10 + Ω
(2)
10 F

(2)
11 . (5.124)

Also, in the 23-moment approximation,

H(2)
k0 =

W (2)

2!

(
1 + a

(2)
10 P

(2)
k1

)
=
W (2)

2!

[
1 +

(
a

(2)
10

)2

+ a
(2)
10 a

(2)
11 Ek

]
,

H(2)
k1 =

W (2)

2!
a

(2)
11 P

(2)
k1 =

W(2)

2!

[
a

(2)
10 a

(2)
11 +

(
a

(2)
11

)2

Ek

]
. (5.125)

We know that

W (2) =
β2

0

4P0

,
(
a

(2)
11

)2

=
β2

0

6
,

a
(2)
10

a
(2)
11

= − 6

β0

. (5.126)

Thus,

H(2)
k0 =

β2
0

8P0

(7− β0Ek) ,

H(2)
k1 =

β3
0

8P0

(
−1 +

1

6
β0Ek

)
, (5.127)
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and

F (2)
10 =

β2
0

4P0

1

5!!

∫
dK f0kE

−1
k (7− β0Ek)

(
∆αβkαkβ

)2
=

2

5
β0 ,

F (2)
11 =

β3
0

4P0

1

5!!

∫
dK f0kE

−1
k

(
−1 +

1

6
β0Ek

)(
∆αβkαkβ

)2
= −β

2
0

30
. (5.128)

Substituting Ω(2) from Eq. (5.50) we obtain

γ
(2)
1 =

2

15
β0 = 0.133β0 . (5.129)

5.12 Appendix 4: Transport coefficients in Sec. 5.6

In this appendix we list all transport coefficients appearing in the extension of fluid
dynamics discussed in Sec. 5.6. The microscopic formulas for the diffusion and viscosity
coefficients, ~κ and ~η, and for the relaxation-time matrices, τ̂n and τ̂π, are

~κ =

N1∑
k=0, 6=1

α
(1)
k

(
τ

(1)
0k

τ
(1)
2k

)
, ~η =

N2∑
k=0

α
(2)
k

(
τ

(2)
0k

τ
(2)
1k

)
, (5.130)

τ̂n =

N1∑
r=0, 6=1

(
τ

(1)
0r λ

(1)
r0 τ

(1)
0r λ

(1)
r2

τ
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)
, τ̂π =
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0r λ

(2)
r0 τ

(2)
0r λ

(2)
r1

τ
(2)
1r λ

(2)
r0 τ

(2)
1r λ

(2)
r1

)
. (5.131)

The transport coefficients of the nonlinear terms in the equation of motion for ~nµ are

δ̂nn =
1

3

N1∑
r=0, 6=1

(
3τ

(1)
0r λ

(1)
r0 5τ

(1)
0r λ

(1)
r2

3τ
(1)
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(1)
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r2

)
, (5.132)

λ̂nn =
1

5

N1∑
r=0, 6=1

(2r + 3)
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λ̂nπ =
1

4
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τ̂nπ = −4P0
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ˆ̀
nπ = −
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while those in the equation of motion for ~π µν are

δ̂ππ =
1

3
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τ̂ππ =
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τ̂πn =
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λ̂πn = − 1
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