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IMPLICIT DENSITY FUNCTIONALS FOR THE
EXCHANGE-CORRELATION ENERGY: DESCRIPTION OF VAN
DER WAALS BONDS
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Inst. fiir Theor. Physik, Univ. Frankfurt, D-60054 Frankfurt/Main, Germany

The energy surface of the Helium dimer, as a prototype of a van der Waals bond
molecule, is investigated within the framework of density functional theory. For
the exchange-correlation energy an implicit density functional, depending on the
Kohn-Sham orbitals, is applied in which exchange is treated exactly, while corre-
lation is approximated by the lowest order contribution obtained by Kohn-Sham
perturbation theory. The resulting energy surface is in fair quantitative agree-
ment with highly accurate empirical data over the complete range of internuclear
separations, demonstrating that the concept of orbital-dependent functionals can
provide a seamless description of dispersion forces. As selfconsistent calculations
with implicit functionals on the basis of the optimized potential method are rather
time-consuming, the correlation part of the exchange-correlation functional is eval-
uated perturbatively in the Helium dimer calculations. However, we also present an
approximate scheme for the evaluation of the corresponding correlation potential.

1 Introduction

The description of dispersion forces is a long-standing problem in density functional
theory (DFT)!® (for an introduction to DFT, see Ref. 10). As these forces extend
into regions of space with vanishing density, their correct representation is a crit-
ical test for any approximation to the exchange-correlation (zc) energy functional
E,.. While state-of-the-art generalized gradient approximations (GGA) improve
atomic and molecular properties (see, e.g., Ref. 11) over the standard local den-
sity approximation (LDA), their semilocal structure nevertheless does not allow
the reproduction of van der Waals (vdW) bonds.}? In view of these difficulties,
research in DFT has for some time concentrated on the prediction of the lead-
ing vdW-coefficient Cg which is accessible via the polarizabilities obtained from
the Kohn-Sham (KS) orbitals of the isolated systems (atoms, molecular compo-
nents).>"° However, for actual applications it is not sufficient to just focus on the
asymptotic Cg/RS-attraction as it has been shown!? that this force is not the only
binding mechanism in vdW systems. This emphasizes the importance of a seamless
DFT description of vdW forces which reproduces the complete energy surface

Ep(R) = E[Xo](R) - 2E[X] (1)

of vdW molecules, rather than just its asymptotic behavior (in (1) E[X] denotes
the ground state energy of system X, and we have restricted ourselves to dimers for
simplicity, with R being the internuclear separation).

Recently, three concepts for a seamless DFT treatment of the vdW interac-
tion have been introduced,®® all three relying on the adiabatic connection for-
mula for E,. together with some approximation for its crucial ingredient, the
coupling-constant-dependent response function x(r,r’,w). Kohn et al® decom-
pose the Coulomb interaction into a short and a long range part, which leads to
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a corresponding decomposition of E .. The long range component of E;. is then
represented in terms of the (retarded) response function of the entire system, which
can be calculated via time-dependent DFT (using the LDA for the zc-kernel). This
scheme yields a very accurate value for the Cg of Helium.® On the other hand, the
evaluation of the complete (molecular) xx(r,r’,w) is a rather demanding task and
no consistent approximation for the short range part of E,. is presently available,
so that full scale applications to vdW-bond molecules have not been reported so
far. Utilizing the random phase approximation (RPA) in the “Dyson equation”
of time-dependent DFT, Dobson et al® express ) via the noninteracting response
function and the zc-kernel of the homogeneous electron gas, both evaluated with
a nonlocal average density 7i(r,r’). This concept has been successfully tested for
two jellium metal slabs, attracting each other by dispersion forces.® It depends,
however, on the particular choice of 7i(r,r’). It is not clear whether this choice has
to be adjusted to the specific structure of the system under consideration. In an
alternative approach, Lein, Dobson and Gross’ restrict themselves to first order in
the “Dyson equation” of time-dependent DFT and approximate the zc-kernel by
its static z-only limit. This scheme yields rather realistic values for the Cg of light
atoms, the energy surfaces .of vdW-bond molecules, however, have not yet been
examined.

A further route to a seamless DFT description is provided by the concept of
implicit, i.e., orbital-dependent, zc-functionals. To date, in most applications of
this scheme!®1® the exact representation of the exchange energy E, via the Fock
term (evaluated with the KS orbitals @) is combined with a conventional density
functional for the correlation energy E.. Unfortunately, such combinations exhibit
the same deficiency in the long-range behavior of Ey(R) as the standard density
functionals. Recently, however, two systematic (i.e., universal and parameter-free)
orbital-dependent approximations for E. have been presented for use with the ex-
act E;. On the one hand, the random-phase-approximation (RPA) has been put
forward for application to metallic systems.'®17 On the other hand, a correlation
functional based on KS perturbation theory, E§2),18,19 has been introduced. It has
been shown that E£2) approaches the asymptotic vdW limit!® and yields Cs-values
in reasonable quantitative agreement with experimental values for light atoms.”°
Here we apply the combination of the exact E; and E‘£2) (called XC2-functional
hereafter) to He,.2® Our results demonstrate that the XC2-approach contains the
basic physics required to reproduce vdW bonds. However, as in conventional many-
body approaches, higher order correlation corrections have to be taken into account
for a fully quantitative description of noble gas dimers.

The zc-potential corresponding to orbital-dependent zc-functionals has to be
evaluated by the optimized potential method (OPM).?! This procedure is com-
putationally less efficient than LDA or GGA calculations, so that a perturbative
treatment of orbital-dependent functionals on LDA or GGA basis would be de-
sirable. However, our results show that at least the exact E; has to be included
selfconsistently (via the OPM). At the same time they seem to justify a perturba-

tive use of E,(;z). Nevertheless, we also discuss a first, simple approximation which
should allow the selfconsistent application of Eéz).
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2 Theory

In this section we summarize the systematic derivation of orbital-dependent xc-
functionals as well as their practical application via the OPM. To start with, let
us for a moment assume that the multiplicative Kohn-Sham (KS) potential vs,
which establishes the auxiliary single-particle system with the same density as the
interacting system of interest,'? is known. Later we will discuss, how v, can actually
be obtained. This potential defines a noninteracting Hamiltonian,

m=T+/$rmmgﬂ, @)

which induces a decomposition of the interacting Hamiltonian H into a single- and
a two-particle part,

H=H,+(H-H,). (3)

From here a perturbation expansion of the ground state energy, and thus of Ej,
suggests itself.%22 To first order in H — H, the Fock-term is obtained as the exact
exchange contribution F,

2
E.=—% 3 (i) W
€i,€j<€p
1
(ij]|kl) = /d3r1 /d3 r1)¢k|i1;1)_¢rill'2)¢z(r2)’ o

where the ¢ denote the KS-orbitals,

{ - 2272 + vs(r)}m(r) = exdr(r),

and ep is the Fermi level. As the ¢y are themselves functionals of the density n,
albeit implicit ones, E, can be viewed as the orbital-dependent representation of
the exact density functional for E;. This E; then defines the DFT correlation
energy E. via E, = E;. — E,.

Before proceeding to the second order contribution let us briefly discuss the
method which allows to evaluate the multiplicative potential vz¢(r) = d E;zc[n]/dn(r)
corresponding to an orbital-dependent F,... Applying the chain rule for functional
differentiation twice, the derivative §/dn(r) can be replaced by derivatives with
respect to the ¢y, which leads directly to the OPM-integral equation,?:22

/dsr' Xs(T, ) vze(r)) = Age(r), (6)

where

Xs(r,r') = c.c.

_ v 3 A0nmele)nw) ()

5vs(r’ €k — €
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is the static KS response function and the inhomogeneity reads

— 3,/ ¢};(l‘)¢z(l‘) tip! 0E:. 2%
Amc(r)—;{/d [f; 0D ) s oo +nIP T . ®

To keep the discussion as general as possible we have here assumed that E;. not
only depends on the KS orbitals but also on the KS eigenvalues €.

In contrast to the LDA and GGA the representation of E, via the Fock term
leads to an exact cancellation of the self-interaction. Correspondingly the asymp-
totic decay of v; compensates the self-interaction potential of the outermost elec-
tron, 'ugc(r)lr':aco —e?/|r| (for finite systems). This property generates a Rydberg
series of unoccupied states which allows the description of negative ions.??

Extending the perturbation expansion to second order E.g2) is obtained as most
simple correlation contribution. It consists of two terms, the first one having the
same form as the second order Mgller-Plesset expression (MP2) and the second one
reflecting the difference between the exchange-only (x-only) OPM and the Hartree-
Fock (HF) ground state energy (AHF),

B = B 4 BOYE ©)
e _ € D (i3] [k [(3511KD) — (i511Lk)] (10)

‘ €6 SEF <€k, € €+ &~ ¢ ~€

2
1 . .
EAF = % Gloall) + e > (@llib)] (11)
ei<er<e & € €;<er

(ilvsll) = / i ¢ ()i (r)va(r) (12)

At this point unfortunately a problem arises: The direct application of the
OPM, Egs. (6-8), to ES? leads to an asymptotically divergent potential.23 This
can be gleaned from the fact that for large |r| the response function on the left
hand side of Eq. (6) is dominated by the most weakly bound occupied orbital. In
contrast, the right hand side decreases much more slowly due to the appearence
of excited states in (9). To circumvent this difficulty we recast E® in a different
form which suggests an approximation for the correlation potential. For simplicity,
we neglect EAHF a this point, which seems legitimate in view of the fact that this
term represents only a minor correction to the dominating EMF2.22 We then focus
on the pair-correlation energies,

(&

et i) lkD[(Kl||35) — (KL||g3
Mpz__z_ Z (11| kD) [(Kl)li5) — (kl]]59)]

v €+ € —€—€

. (13)

€F<E€k,€
The excited states in eMF? can be eliminated by a closure approximation (CA),
assuming the individual eigenvalue differences in the denominator of (13) to be well
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Figure 1. Correlation potential of Ne: Exact vc2* versus PW91-GGA?® and Colle-Salvetti (CS)26

result as well as the closure approximated second order potential, vE.CA).

represented by some average Ae,

4
=Sl - X G

€k €1<€F

NETIES (ij||kl)(kz||ji>} (14)

€k €1S€ER
e r1)¢(r r
(a5 |kl) = / iry [dory PV 1)#;(r2)¢i(ra) (15)
|r1 —raf?
egf‘ then allows to rewrite EMF? as
B e Y gt wih wg =Gt 9

€i,6;<€F

(note that the arbitrary energy scale Ae drops out of EE’IPz). Until now, EMF? has
only been reformulated in an exact manner. However, understanding the w;; as
fixed numbers, rather than as functionals of ¢ and €, a finite correlation potential
véCA) can be directly obtained by solving the OPM equation (6), varying only the
ef’;A, Eq. (14). The result of this procedure is shown in Fig. 1 for the case of Ne,
in comparison with the exact vc,2* the PW91-GGA? and the orbital-dependent
Colle-Salvetti potential?® (all approximations have been evaluated with the exact
KS orbitals). Clearly, neither the GGA nor the semiempirical Colle-Salvetti ap-
proximation reproduces the orbital structure of the correct v.. On the other hand,
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vﬁCA)is the first DFT potential which at least qualitatively follows the exact v..
Fig. 1 can thus be interpreted as an encouraging result, pointing at the systematic
origin of Egz).

3 Dispersion forces

One can immediately demonstrate that the correlation functional (9) in principle
reproduces the 1/R®-behavior of long-range dispersion forces. Consider two neu-
tral, closed-subshell atoms A and B at very large internuclear separation R. The
overlap between an occupied atomic KS-orbital of atom A, ¢; 4, and an unoccupied
orbital of atom B, ¢; g, then vanishes exponentially with increasing R (and vice
versa). Consequently, the sums over KS states in Egs. (10,11) can be decomposed
with respect to the two centers A and B, 35, — 3. +2_, (for homonuclear
systems the degenerate symmetric and antisymmetric molecular orbitals have to
be combined to localized atomic orbitals). The complete E§2) then splits into two
R-independent terms, the atomic Eé” of the individual atoms, and an interaction

component Eé,zi)m,

2 (iajBllkalB)(kalB|liajB)
Et(:,i)nt = ¢t Z Z 6 e —er —¢ . (17)

€i, Ser<er, €jpler<eg 1A JB ka ls

Finally, after an expansion in powers of 1/R, E®

c.int Can be rewritten in a more
familiar form,*

C _
B =~ + O(B™) (18)
* d R'RI RFR! . )
CG = / —2—; Z (5,_7 — 3-"I-Z'2—> ((Sk[ - 3—R—2>aA,ik(’l/u)OlB,jl(2’U,), (19)
0

ijkl
where a;; denotes the atomic KS polarizability tensor,

aik(w) = / d3ry / d®rg r1,i o X2 (r1,T2,W), (20)

which contains the atomic retarded KS response function 2. On the other hand,

the electrostatic and exchange contributions to the interaction energy between A
and B vanish exponentially with R for closed-subshell atoms, so that Eg)nt dom-
inates Ey(R) in the large-R regime. The functional (9) thus yields the correct
asymptotic 1/RS-behavior of Ep(R). The resulting van der Waals coefficient (19),
on the other hand, differs from the full Cg due to the fact that the KS polarizability
(20) is not identical with the true one (cf. Ref. 7). However, these differences are
of the order of 10-20% for light atoms,”® so that (9) appears to be a reasonable

starting point for the DFT description of van der Waals bond molecules.

4 Technical details of the He-dimer calculations

The direct numerical solution of the OPM integral equation (6) is a rather time-
consuming procedure even for the exchange functional (4) (cf. Refs. 13,15,27,28).
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We have thus used the Krieger-Li-Iafrate (KLI) approximation® for the solution
of (6) which has been shown to give extremely accurate v, for few electron atoms
(see, e.g., Ref. 27). In particular, it is exact for Helium-like two-electron systems.
In the following we will thus identify the KLI approximation with the full OPM for
simplicity. Moreover, as mentioned in Section 2, a straightforward solution of (6)
for the functional (9) does not seem to exist. While the closure approximation (16)
might pave a way to the selfconsistent use of functionals like (9), its present form
overestimates the true atomic correlation potential substantially. Moreover, even
the application of the approximation (16) is computationally very demanding as
the e}f72 have to be evaluated for each iteration of the selfconsistency cycle. E®
has thus been applied perturbatively in the calculations for the Helium dimer.

For the solution of the two-center Kohn-Sham equations we have used prolate
spheroidal coordinates &, 7, ¢,

= (r1+r2)/R, n=(r1—r2)/R, ¢=tan(y/x)

1<t<oo,  -l<n<l 0<p<or (21)

where 71, r9 are the distances between the electronic position r and the two nuclei
at the positions (0,0,+R/2). Due to the rotational symmetry with respect to the
internuclear axis the KS orbitals can be classified as

$i(r) = Ve m| (&;ME™Xe , m=0,£1,42,..., k=1,2,..., (22)

with x, denoting the standard Pauli spinors. The cylindrical functions ¥ m| (£, n)
are then expanded in terms of a nonorthogonal Hylleraas basis,°

Nmaz lmaz+|m|

YemEm = Y kP m)(E? - 1)mi2

n=0 l=|m|

X exp ( - %‘-l) L (f“—l) , (23)

where the L7 and P/™ are generalized Laguerre polynomials and associated Legen-
dre functions, respectively, and a is an adjustable parameter. The computational
details can be found in Ref. 20 where also an extensive discussion of the\ accuracy
of the results is given: The basis set and grid sizes as well as the pa.ramet\ir a have
been chosen so that for the energy surface of He an overall accuracy of better than
luhartree is reached (without any extrapolation as e.g., t0 lmqez = 00).

5 Results

Our results for He, are given in Figs.2,3. Fig. 2 shows Ey(R) for three DFT variants
in comparison with HF3! and essentially exact empirical results.3? Similar to the
HF approach, the x-only OPM (utilizing the exact exchange (4), but neglecting
correlation completely) produces a strictly repulsive Ep(R). Both energy surfaces
are very close together, with the HF energy always being somewhat lower than
the x-only OPM energy. This reflects the fact that, while the functional forms of
the x-only OPM and HF energy are identical, the multiplicative OPM potential
reduces the variational freedom marginally compared to the nonlocal HF potential
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Figure 2. Energy surface of Hep: X-only and correlated OPM data, versus LDA, HF3! and exact32
results.

in the case of Hey (for atomic Helium the ground state energy of the x-only OPM
is identical with the HF ground state energy). Note that the excellent agreement
between the HF and x-only OPM results also corroborates the high accuracy of the
KLI approximation for v, in the case of Hes.

Turning to the LDA,33 one recognizes that a bound Helium dimer is predicted,
however, at an equilibrium separation R, of 4.5 bohr and with an extremely large
well depth D, of 9.7meV (all our LDA results are in good agreement with those of
Ref. 12). The LDA needs a substantial overlap of the two atomic densities in order
to generate an attractive force, and this overlap can only be achieved by bringing
the atoms much closer together than they are in reality. This result reflects the
general perception that the LDA is not suitable for describing vdW bonds.

Finally, inclusion of Eéz) in the OPM scheme (abbreviated by XC2-OPM) leads
to an energy surface in reasonable agreement with the exact Ep(R): The XC2-
OPM yields an R, of 5.33bohr and a D, of 1.62meV (exact: R. = 5.61bohr,
D, = 0.95meV) which reduces the errors in both quantities by almost an order
of magnitude compared to the LDA. As to be expected from the discussion of
section 3, the XC2 energy surface shows the 1/R®-behavior for large R. The value
for C¢ which is extracted from our numerical Ey(R) under the assumption that
for R = 10bohr, Ey(R) = —Ces/RS is 2.26 hartreebohr®. This result deviates by
only 0.6 hartree bohr® from the Cg of 1.66 hartreebohr® obtained via (19) from the
atomic KS polarizability of Helium,”® consistent with our error estimate of better
than 1 yhartree for the numerical Ey(R).

Given the fact that the basic concept underlying the XC2-functional is second
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Figure 3. Comparison of different second order perturbative approaches to the energy surface of

Heg: Perturbative evaluation of the XC2-functional on the basis of the x-only OPM and LDA
Hamiltonians versus conventional MP2 result.34

order perturbation theory the realistic Ep(R) obtained with the XC2-OPM might
not be surprising. Clearly, the functional (9) will lead to an asymptotic 1/RS-
dependence, irrespectively of the type of the single-particle orbitals used in (9):
The specific nature of the ¢y is not used for the derivation of (18). However,
this does not imply that the resulting Ep(R) reproduces the exact energy surface
for any choice of the single-particle Hamiltonian. This is demonstrated in Fig. 3
where we compare three variants of second order perturbation theory. In addition
to the XC2-OPM we plot the Ep(R) obtained by a second order expansion using
selfconsistent LDA orbitals (XC2-LDA) and the conventional second order Mgller-
Plesset (MP2) result® (based on the HF Hamiltonian). In the case of the XC2-
LDA E2HF jnvolves the difference between the nonlocal HF exchange and the
LDA zc-potential, and the Fock expression for E, is also evaluated with LDA
orbitals. The spectroscopic constants found with the XC2-LDA (R, = 7.44 bohr,
D, = 0.17meV) are rather different from the XC2-OPM values. In spite of these
large deviations, however, the XC2-LDA produces a 1/RS tail in Ep(R) with a value
for Cg which is only 30% larger than the Cs calculated with the XC2-OPM. The
MP?2 scheme, on the other hand, overestimates R, as much (R, = 5.88 bohr) as the
XC2-OPM underestimates it. Accordingly, the MP2 underestimates D, by about
35% (D, = 0.53 meV), while the XC2-OPM overestimates it by 50%. These results
demonstrate that second order perturbation theory does not automatically generate
a realistic Ey(R), i.e., independently of the underlying zeroth order Hamiltonian.
The HF Hamiltonian and the x-only OPM Hamiltonian bracket the exact result,
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so that they appear to be equally suitable as starting point for a perturbation
expansion. In both cases, however, higher order correlation corrections are required
to obtain a complete quantitative agreement with the exact Ep(R) (cf. Ref. 34). It
remains to be examined to what extent a suitable selfconsistent treatment of the
functional (9) changes this picture.

In order to understand the differences between the XC2-OPM, XC2-LDA and
MP2 energy surfaces one has to analyze the underlying single-particle spectra. First
of all, one finds quite generally that the value for EMF? obtained with LDA states
is larger than that calculated from OPM states, which, in turn, is larger than the
conventional MP2 correlation energy (see Ref. 22). This relative size is, on the
one hand, controlled by the eigenvalue gap between the highest occupied (HOMO)
and the lowest unoccupied (LUMO) orbitals: This gap is smaller in the case of the
OPM (HOMO — _916mhartree, *°UMC = —172mhartree at R = 5.8bohr) than
for the HF approach, for which ¢HOMO js essentially identical, but e?UMO = 0.
The gap is still smaller for the LDA spectrum (¢2°MO = _572mhartree, LUMO —
+19mhartree for our basis). As a consequence, the XC2-OPM value for EMF? is
20% larger than the MP2 result. An analogous difference shows up for atomic
Helium and, finally, in Ep(R). On the other hand, while the XC2-LDA value for
Eﬂ’[m is still larger than the XC2-OPM result, the difference amounts to only 2%,
compared with the 23% increase of the gap. This clearly shows that not only the
size of the gap, but also the form of the orbitals entering the Slater integrals in (9) is
important for the final value of EMP2. Nevertheless, with EMF? being larger in the
case of the XC2-LDA, one might expect that the resulting Ep(R) is more attractive
than the XC2-OPM result. However, a significant error is introduced into the XC2
ground state energy by the perturbative evaluation of the comparatively large Eg,
Eq. (4), with LDA orbitals. While the correction (11) compensates most of this
error, the net effect is a XC2-LDA ground state energy which is 1.90 mhartree less
attractive (again for R = 5.8bohr) than its XC2-OPM counterpart. Upon sub-
traction of the atomic ground state energy one ends up with a completely different
Ey(R), indicating the extreme sensitivity of the Hey energy surface to the accurate
handling of the exchange functional: E, must be treated selfconsistently in order
to obtain a realistic Ep(R) for Hey with the XC2-functional.
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