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Gradient expansion for T,[n]: Convergence study for jellium spheres
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The convergence of the gradient expansion (GE) for the kinetic energy functional T;[n] is tested
on the basis of the spherical jellium model for metal clusters. By insertion of Kohn-Sham densities
into the GE it is found that fourth-order contributions to the GE are more important for jellium
spheres than for atoms, indicating that these corrections might also be relevant for the description
of solids. By solution of the Euler-Lagrange equations resulting from the GE truncated at second or
fourth order, it is demonstrated that the variational accuracy of the GE is considerably lower than
that obtained by insertion of high-quality densities. Furthermore, it is shown that a GE to second
order with an adjusted prefactor of the gradient term does not give variational results for jellium
spheres superior to a fourth-order GE as in the case of atoms.

The construction of nonlocal corrections to the
exchange-correlation energy functional FEy.[n] is one
of the key issues of density-functional theory (DFT).
Among the various suggestions for nonlocal approxi-
mations to Ey.[n] the gradient expansion (GE) as the
most direct extension of the local-density approximation
(LDA) was the first to be considered in the literature.'
However, applications of second-order gradient correc-
tions to atoms seemed to demonstrate the inadequacy
of the GE, at least for these finite systems. By now it is
clear that part of the failure of the second-order gradi-
ent correction to the exchange-only E.[n] was due to the
incorrect gradient coefficient used.®> Moreover, it has re-
cently been argued® that fourth-order contributions are
important ingredients of the GE for E.[n] such that it
seems worth to examine the GE’s properties for extended
systems, i.e., solids, in more detail.

In contrast to the limited information available on the
GE for Ey.[n] (concerning both gradient coefficients and
properties in applications) much more is known about the
corresponding GE for the kinetic energy functional T;[n].
In addition to the second-order gradient correction”®?!
T n] the fourth-791 (T, ,,[4][n]) and sixth-order!! con-
tributions have been evaluated. Furthermore, in contrast
to the corresponding fourth-order correction for exchange
T [n] is finite for exponentially decaying densities such
that not only the second-order GE (GE2),
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has been extensively tested for atoms.'?"17 The informa-
tion on the GE4 for T,[n] provides an idea of what can
be expected from the GE4 for Ey [n].

It is not clear, however, how well results for atoms char-
acterize the situation in solids for which the GE should
be more appropriate. It is thus worthwhile to analyze
the GE’s properties for other model systems in order to
check the universal significance of the results found for
atoms. Particularly interesting in this respect are sys-
tems which show an extended weakly inhomogeneous re-
gion (analogous to the interstitial region in metals) but
allow for an exact treatment in order to have a rigorous
comparative standard. One such system is the spheri-
cal jellium model for metal clusters’® 2% on which the
present study is based. In this model the ionic structure
of metal clusters (whose nomenclature is adopted here)
is approximated by a homogeneous background charge
density n(r) = ng®(R — |r|) characterized by the bulk
Wigner-Seitz radius rs = (3/ 47rn0)§’ and the cluster ra-
dius R = rgN3. While shell effects remain present for
all the cluster sizes considered here (ranging from Na, to
Nags4), the density in the interior of these jellium spheres
systematically approaches the homogeneous limit with
increasing size (compare Ref. 18) thus covering density
gradients complementary to those found in atoms.®

Moreover, while a variety of even more nonlocal ap-
proximations to T,[n] have been discussed in the litera-
ture (see, e.g., Refs. 15, 21-24), the original GE (to either
second or fourth order) has been the only form used for
real applications in atomic,?® surface,?672® and nuclear
physics (for a review see Ref. 29). Renewed interest in
the GE originates from the growing field of cluster physics
where the jellium model has been extensively applied to
discuss global trends for ground state properties and col-
lective excitations. In this context the GE has, e.g., been
used to evaluate the size dependence of electronic proper-
ties of clusters (see, e.g., Refs. 30-34 — establishing the
liquid drop model for metal clusters®®) and the stability
of charged clusters.36:37 However, to date no systematic
study of the convergence of the GE for these systems is
available. In particular, the importance of fourth-order
contributions which turned out to be necessary for the re-
alistic description of nuclei?® (whose geometry is rather
similar to that of jellium spheres) and surfaces®® has not
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been studied in detail. Thus in addition to the concep-
tual reasons for examining the GE for jellium spheres its
properties for these systems are also of practical interest.

For a comparison of the GE with the exact T,[n] us-
ing jellium spheres we follow the two routes previously
exploited in the atomic situation: (i) By insertion of “e
act” densities into the various orders T} ][n] the conver-
gence of the GE is investigated. In the present context
the results of Kohn-Sham (KS) calculations for jellium
spheres using an accurate form®® of the LDA for E,.[n]
serve as an “exact” reference standard. (ii) By solving
the Euler-Lagrange equations resulting from the GE2/4
for T,[n] in combination with ELPA[n],

o = s )
Eln] = TGE2/4[”] + Ees[n] + ELDA[”],
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the variational properties of the GE2/4 are tested. Note
that in order to examine the GE for T,[n] an approximate

E,[n] is completely legitimate as long as the same Ey.[n]
is used with the GE and the reference standard.

In Table I the T [n] obtained by insertion of KS den-
sities for a number of closed-shell jellium spheres (for
sodium, rs = 3.93 a.u.) are compared with the corre-
sponding exact T,. The fourth-order contribution has
been decomposed into its three components in order to
reveal the relative size of the Vn and V2n contributions.
Furthermore, the percentage errors d; of the GEO (i.e.,
the Thomas-Fermi approximation), the GE2, and the
GE4 are listed. In Table II the corresponding energies
and errors for closed-shell atoms are given (here densi-
ties and energies from exchange-only LDA calculations
have been utilized — note that neither the relative size
of the T nor the é; depend on the specific reference
densities used for this comparison).

First of all, one notes that the accuracy of T,[O] becomes
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higher with increasing size of both clusters and atoms.
Comparing both types of systems it seems that the er-
ror of the GEQ is almost a factor of 2 lower for jellium
spheres (2.9% for Nagy versus 4.5% for Rn). The picture
is completely different for the GE2. On one hand 4, does
not vary as much as §p with increasing electron number.
While one notices some decrease with electron number
for jellium spheres (1.3% for Na;s compared to 0.7% for
Nags4), 92 is rather independent of the size of atoms (with
the exception of the very small atoms). Moreover, the

ratio T, ]/ T is considerably smaller for jellium spheres
(1/60) than for atoms (1/25) and 4 is somewhat larger.
The most pronounced differences between jellium spheres
and atoms, however, are found for the GE4. Already the

relative size of T[ | and T,[21 indicates the importance of

fourth-order contributions for jellium spheres: T* U and
T,[4’2] are roughly twice as large as T,[z], while T/*% is
about as large. In spite of a large degree of cancella—
tion between the three fourth-order contributions their
sum still represents about one-third of T,[2 . In atoms, on
the other hand, T,m dominates completely over all indi-
vidual fourth-order terms and their sum. In accordance
with this observation one notices that the accuracy of
the GEA4 is clearly higher for atoms where errors of less
than 0.1% indicate “convergence” of the GE. While the
improvement over the GE2 offered by the GE4 is less im-
pressive for jellium spheres (errors are reduced by roughly
a factor of 3), the size of the fourth-order terms never-
theless requires their inclusion. Moreover, for both atoms
and jellium spheres T,[4'1] and T!*? dominate over T+
(compare the corresponding contributions to surface en-
ergies given in Ref. 38).

In Fig. 1 the solutions of Eq. (1) for Nag; are compared
with the corresponding KS density. As is well known
from atoms and nuclei the GE2/4 are not able to repro-
duce any shell structure but rather average through the
shell oscillations of the exact density. Figure 1 demon-
strates, however, that the surface region is more accu-
rately described by the GE4 than by the GE2, corrobo-
rating the importance of fourth-order corrections from a
local perspective. Note that asymptotically GE4 den-

TABLE L Individual contributions 7" to the GE for T, [n] obtained by insertion of KS densities and corresponding percentage
deviations J; from exact KS result, TX®, for closed-shell jellium spheres with 7s = 3.93 a.u. (all energies in hartrees).

Size TKS [0 5o T2 52 i T2 1431 A
2 0.115 0.105 8.81 0.013 231 0.037 20.051 0.021 7.56

8 0.493 0.463 6.04 0.029 0.18 0.072 -0.096 0.037 -2.29
18 1.171 1.107 5.50 0.049 1.33 0.103 -0.136 0.051 -0.20
20 1.275 1.210 5.06 0.049 1.21 0.104 -0.137 0.051 -0.23
34 2.259 2.157 4.53 0.073 1.28 0.144 -0.188 0.069 0.14
40 2.611 2.486 4.77 0.074 1.95 0.141 -0.183 0.067 0.96
58 3.885 3.746 3.56 0.102 0.93 0.200 -0.256 0.093 -0.02
92 6.192 6.011 2.92 0.135 0.73 0.256 -0.325 0.117 -0.03
132 8.998 8.734 2.93 0.173 1.01 0.317 -0.400 0.143 0.34
138 9.331 9.089 2.60 0.172 0.77 0.310 -0.391 0.139 0.14
186 12.725 12.402 2.54 0.215 0.85 0.386 -0.484 0.172 0.27
196 13.335 13.003 2.49 0.213 0.89 0.370 -0.463 0.164 0.36
198 13.461 13.119 2.54 0.211 0.97 0.363 -0.454 0.161 0.45
254 17.418 17.033 2.21 0.261 0.71 0.461 -0.574 0.203 0.20
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TABLE II. Individual contributions T!" to the GE for T, [n] obtained by insertion of KS densities and corresponding per-
centage deviations &; from exact KS result, TXS, for closed-shell atoms (all energies in hartrees).

Atom TKS Tl 8o T2 8 T4l T4 T+ 84
He 2.724 2.411 11.48 0.303 0.37 0.216 20.274 0.136 2.47
Be 14.223 12.766 10.24 1.479 015 0.510 0.507 0.326 2.47
Ne 127.491 116.516 8.61 9.033 0.82 2.049 71.358 1.206 20.67
Mg -198.249 182.471 7.96 14.568 0.61 2.675 -1.484 1.526 -0.76
Ar -524.517 487.449 7.07 34.000 0.58 5.714 -2.592 3.017 -0.59
Ca 674.160 627.254 6.96 42.374 0.67 6.847 ~2.800 3.539 0.45
Zn 1773.910 1661.010 6.36 97.151 0.89 13.992 4.189 6.872 20.05
Kr 22746.866 2585.381 5.88 141.292 0.74 19.740 5271 9.441 0.14
St -3125.998 2945.731 5.77 157.952 0.71 21.776 5.477 10.319 0.14
Pd 4931.010 4663.183 5.43 233.783 0.69 31.385 6.975 14.482 20.10
Cd -5457.822 5165.591 5.35 255.153 0.68 34.042 -7.314 15.609 -0.10
Xe -7223.657 6848.711 5.19 324.938 0.69 42.748 -8.466 19.265 -0.05
Ba 7874.734 7468.701 5.16 350.153 0.71 45.766 8.699 20.506 20.02
b -13380.911 12726.033 4.89 550.976 0.78 69.370 10.748 30.441 0.11
Pt 17318.534 16500.127 467 686.767 0.71 85.309 12111 37.033 0.07
Hg -18395.920 17545 544 1.62 723.202 0.69 89.568 12.431 38.772 0.06
Rn -21852.321 20869.844 4.50 838.258 0.66 103.082 -13.530 44.258 0.05

sities vanish like 1/7® (see, e.g., Ref. 17), while GE2
densities decay exponentially. This property, however,
does only show up!” for extremely large r and thus does
not affect the behavior of n(r) in the physically relevant
part of the asymptotic regime (1—4 a.u. in the case of
atoms). This is reflected by the fact that chemical po-
tentials from GE4 calculations are superior to their GE2
counterparts (e.g., for Nag, one obtains pggs = 0.0957
a.u. and pugez = 0.0871 a.u. compared to the eigenvalue
of the highest occupied KS orbital of 0.1124 a.u.).

In Fig. 2 the percentage errors of ground state energies
from variational calculations using TSR/ 4[n] are plot-
ted for Na; to Nagss. Quite generally the GE2/4 lead
to an overbinding compared to KS ground state ener-
gies. Moreover, the GE2/4 do not reproduce any shell
structure and the ground state energies per particle are
monotonically increasing with electron number for both
variants. Consequently one observes the magic numbers
(8,18,20,34,...) corresponding to shell closings of partic-
ularly stable shells in the case of KS calculations as min-
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FIG. 1. Density profiles for Nagz from Kohn-Sham calcula-
tion (solid line) and solution of (1) (GE2 — dashed line, GE4
— dotted line).

ima in the GE’s error. The overall level of accuracy of
the GE’s variational energies is comparable to that for
atoms (compare Fig. 2 of Ref. 17). While for very small
systems the error can be of the order of 10%, it is sys-
tematically decreasing with increasing particle number
(although rather slowly). Errors of about 2-4% for the
GE2 and 1-2% for the GE4 are typical for most of the
systems considered here. As for atoms the errors from
variational use of the GE2/4 are considerably higher than
those obtained by insertion of “good” densities. How-
ever, the former accuracy is more characteristic of what
one can expect from applications of the GE2/4.

In the atomic case it has been shown?® that a modified
GE2 with a prefactor A = 1/5 generates very accurate
atomic ground state energies over the complete periodic
table. This can be understood on the basis of Lieb’s
proof*! that the leading two terms in a 1/N 3 expansion
of the exact ground state energy of neutral atoms are
reproduced by variational solutions from the GE2 if A =

0 50 100
N

150 200 250

FIG. 2. Percentage deviation of ground state energies for
jellium spheres (rs = 3.93 a.u.) obtained by solution of (1)
(GE2 — solid line, GE4 — dashed line) from KS ground state

energies.
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0.1859... is used. The corresponding expansion of the
ground state energy of jellium spheres,

E(R) = 4?”123a+47rR20+27rR7+... , (2)

where o represents the bulk energy density of the cor-
responding metal, o is the surface, and v the curva-
ture energy, constitutes the liquid drop model for metal
clusters.3® In analogy to the atomic case one can try to
reproduce the “exact” o obtained from KS calculations
for the planar surface by the GE2 adjusting A appropri-
ately. In fact, choosing A = 0.2179 (for rs = 4 a.u.)
and evaluating the coefficients of the expansion (2) as in
Ref. 32 one obtains ¢ = 163.5 ergs/bohr?, i.e., exactly
the planar surface value.? The accuracy of the corre-
sponding ground state energies for small jellium spheres
is given in Fig. 3. As in the atomic situation the errors
of this modified GE2 are smaller than those of the orig-
inal GE2 and seem to approach zero for large systems.
However, unlike the atomic case the absolute size of the
errors remains of the order of 1% even for rather large
systems due to the pronounced shell structure. Moreover,
the value of A which reproduces the exact o depends on
the jellium density rs. Chizmeshya and Zaremba2” have
analyzed the rs dependence of A by applying the mod-
ified GE2 to the planar surface problem. They found
that 1/4 is the optimum value for A taking into account
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FIG. 3. Percentage deviation of ground state energies for
jellium spheres (rs = 4 a.u.) obtained by solution of (1) (GE2
with A = 0.2179 — solid line, GE2 with A = 0.25 — dashed
line) from KS ground state energies.

the density range rs=2-6 a.u. In Fig. 3 the errors for
this choice of A are also plotted. While one notices a
tendency of A = 1/4 to underbind, the overall accuracy
with this prefactor is only marginally worse than that of
A = 0.2179 such that this more universal choice seems
to be preferable to an individual adjustment of A to the
rs considered. Nevertheless the modified GE2 does not
represent such an attractive alternative to the GE4 for
jellium spheres as it does for atoms.
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