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We present an extension of the relativistic Thomas-Fermi-Dirac-Weizsacker model to systems in
arbitrary time-independent external four-potentials. We use a new gradient-expansion technique for
the derivation of the ground-state energy and the ground-state four-current of relativistic fermions
in the presence of electric as well as magnetic fields as functionals of the external four-potential.
The ground-state energy functional of the four-current resulting from standard inversion of the

semiclassical form is manifestly gauge invariant.

I. INTRODUCTION

Recently some interest has been focused on the
density-functional theory of systems in arbitrary static
magnetic fields.""> We present in this contribution a gen-
eralization of the well-known Thomas-Fermi-Dirac-
Weizsacker (TFDW) model to such systems. As ques-
tions of gauge invariance arise (compare the comments
on gauge invariance in Refs.1-5) in this connection, we
first offer a comment on the uniqueness and the variation-
al properties of the ground-state energy functional in the
presence of external magnetic fields. In order to derive
an explicit functional in a manifestly gauge-invariant
fashion, we extend the previous consideration® of a rela-
tivistic TFDW model on the basis of a field-theoretical
approach. The construction of the ground-state energy
functional turns out to be more involved compared to the
case of a system with a pure electrostatic external poten-
tial. For this reason it is more advantageous to generate
the gradient expansion’ envisaged with the aid of an ap-
proach based on Green’s-function techniques.’

II. EXISTENCE THEOREM

In the discussion of existence theorems® for (nonrela-
tivistic) systems in pure electrostatic potentials one has
the statement that the ground-state density determines
the corresponding potential only up to an additive con-
stant and hence the ground state only up to a global
phase factor. In a general situation, where a full four-
potential is present, there exists only a unique relation be-
tween the ground-state four-current and a whole class of
ground states which differ by phase factors due to gauge
transformations.>*

As a general gauge transformation in a static situation,

Alx)=cx%+A(x) with ¢c=const, AA(x)=0,
induces the transformation
WX 1,.Xpy)

N
=exp | —iNex®—i 3 Mx,) |W(x,, ...

n=1

1B

of a many-particle wave function, one recognizes that ex-
pectation values are in general no longer gauge indepen-
dent. Only those expectation values containing
differentiation operators in the gauge-invariant form
iV—V(x) are uniquely determined by the physical four-
current. A possibility for establishing a unique relation
for all expectation values is the use of the paramagnetic
current,’? which is explicitly gauge dependent.

However, it seems to be natural to formulate the ex-
istence theorem of the general case>* in terms of real
physical quantities. To review very briefly the basic
features let us assume a Hamiltonian of the form

H=Hintemal+fd3xV:xt(X)jv(X) ’

where H; ... denotes the sum of the kinetic energy
operator and the electron-electron interaction Hamiltoni-
an of the electronic system (which might be relativistic)
and V¢, a classical external four-potential. The unique-
ness of the relation between the class of ground states
{I¥)} that contains all states that only differ by the
phase shown in Eq. (1), the class of corresponding poten-
tials { V7, }, and the four-current can be demonstrated in
the usual way. Assuming, e.g., two four-potentials V7,
and V2, that differ by more than a gauge transformation
and denoting by |¥) and |¥’) arbitrary states of the cor-
responding ground-state classes which lead to the same
four-current density j,, one obtains from the Ritz varia-
tional principle the inequality

E=(V|H|V) <(V'|H|¥")
=E'+ [d’ j,(x0)[ Vi (x)— V(2] ,
2)

for the ground-state energies E and E’ of the two poten-
tials. The ground-state energy is a gauge-invariant expec-
tation value. If V£, and V., would differ only by a
gauge transformation, the second term in the inequality
(2) would vanish, due to current conservation. An analo-
gous inequality can be derived by starting with E’, and
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addition of both inequalities leads to the familiar contra-
diction

E+E' <E+E'.

The four-current density determines the class of poten-
tials and therefore the class of ground states uniquely.
Consequently, all gauge-invariant expectation values are
uniquely given as functionals of the four-current:

oL, 1=<(vj, llol¥l, D =<(¥I[jllo¥[]) .
One now defines the functional
F[jv]E<\p[jv]|Hintemal|\Il[jv]> ’

via an arbitrary representative state of the class of ground
states corresponding to a given four-current j,. It is then
straightforward to set up a minimum principle for the
gauge-invariant functional

E[j,1=FL )4+ [d*x jL(x)V2i(x), (3)

by using the minimum principle for the class of ground
states of H. The actual ground-state four-current j, cor-
responding to the four-potential V'},, minimizes the func-
tional (3),

E[j,1ZE[j,] . (4)

ext

Thus one finds the ground-state four-current by variation
of E[j,],

J

HF=fd3x limtr{[iy -V, —m —eV

y—x

x)]Gyr(x,p)}
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2 gj,1=o0, )
8j,
under the condition of charge and current conservation,
Jd*x j%x)=N, V-j(x)=0. (6)

Of course, all the usual assumptions concerning v
representability (and nondegeneracy) have to be made.

III. THE TFDW MODEL

In Ref. 6 we derived a relativistic density-functional
representation of the kinetic energy and the exchange en-
ergy in the presence of an external electrostatic potential
starting from the Hartree-Fock (HF) limit of QED. With
the standard Kirzhnits’ gradient-expansion technique the
charge and energy densities can be expressed as function-
als of the external potential. Elimination of the unknown
potential by inversion of the representation of the charge
density then leads to the desired energy expression in
terms of the ground-state density. By analogy with the
nonrelativistic TFDW model the kinetic energy function-
al was evaluated up to second-order gradient corrections,
whereas the exchange energy was treated only to lowest
order. We shall proceed in a similar way in this contribu-
tion.

Again the starting point is the Hartree-Fock approxi-
mated energy of the system,

=1 [ @R [04 Ve o XIF W (K) =B Ve 1 (XIFV L (R) 8 Ve 1 (X)W K (x)]

2
——i% fd3x fd“z D) (x —z){lim,tr[y G yp(z, u) llim, tr[ yP G yg(x, )] —

u—z

where the abbreviations

R
=2
dx
. ) .
lim, = 1( 111%1 0+ lmg o)l(x—y)ZZO’
y—x y—xy >x y—x,p <x

and the sum convention have been used. To represent
this energy approximately as a functional of the four-
potential one needs a corresponding representation of the
Hartree-Fock approximated Green’s function Gyg. To
this aim one first replaces Gy by the propagator of an
effective theory with the Lagrangian

L g=9x)[id—m —eV 4(x)]p(x)— FLE(X)F e, (X)

(8)

where V{z(x) represents an (unknown) classical potential.
The corresponding Green’s function is the propagator of
a system of noninteracting particles in an arbitrary exter-
nal four-potential. Thus the kinetic energy functional
one derives from this approach is that of an equivalent

tr[y?Gur(x,2)y"Gue(z, )1}, (D)

y—x

system of noninteracting particles, i.e., the Kohn-Sham
kinetic energy (analogous to the nonrelativistic case).
The exchange energy obtained by replacing Gy in Eq.
(7) by the effective propagator corresponding to the La-
grangian (8) is evaluated only in lowest order in the fine-
structure constant a.

The propagator of the effective theory can be given
directly in its eigenfunction expansion, which is the start-
ing point for a gradient expansion. However, the stan-
dard gradient-expansion scheme of Kirzhnits’ is not ade-
quate for systems in magnetic fields. An alternative
gradient-expansion technique has been used to evaluate
the Green’s function up to second-order gradient contri-
butions in a preceding paper.’ Using this Green’s func-
tion it is straightforward to derive the four-current and
the energy density in terms of the external four-potential.

The four-current density,

JY(x)=—lim,tr[y G (

y—x

x»1,

has to be renormalized in the standard fashion (for details
see Ref. 6). For our purpose only the lowest-order coun-
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terterm is relevant, as G ¢ does not contain any electron-
electron interaction via exchange of photons,

Z(31)
JR(X)=jieg(x)— o2

g™9,0f—a%* [V, (x), (9)
where Z{" represents the first-order contribution to the
renormalization constant Z; and we set VV=eV; for
brevity. Note that the factor 1/e? is due to our
definitions of the current and the potential. Using, for
example, dimensional regularization one finds

D

2

e2

1272

zy=— (10)

This counterterm cancels exactly the divergence occur-

ring in J,, with the result
3
pR(x)ZL——(x) +AE(x) 2 arcsinh px) E(x)
37’ 1272 m p(x)
[VE(x ]2 E(x)?
247%p(x) p(x)2
—j—F,k(x)F”‘(x) , (11)
247°p(x)
jkx)=—28, | F*x)arcsinh |22 | | | (12)
61 m
with
E(x)=ep—Vx)
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and the spatial components of the field tensor
Fx)=a"Vkx)—a*V(x) .

€ represents the Fermi energy of the system. Note that
E(x) is a gauge-invariant quantity as a gauge transforma-
tion ¥'°=¥%+c has to be accompanied by a shift of the
Fermi energy €r=¢p+c in order to describe the same
physical system after the gauge transformation. As one
would have expected, the spatial components of the
four-current vanish in lowest order. The #=0 limit is
equivalent to a homogeneous system where no current ex-
ists. Furthermore, one immediately recognizes that
V-j(x) vanishes due to the antisymmetry of FX, as
demanded by current conservation for a static four-
potential.

Besides the four-current the energy requires renormal-
ization. The standard scheme leads to a counterterm due
to the renormalization of the external field. Again, for
the noninteracting limit (8) of the full Lagrangian of
QED in an external potential only the lowest-order coun-
terterm occurs:

RX)=limtr([iy -V, —m = V(x)]G (x,)}
y—x
1+2z4" 110 Iy/k
T[-—G,Vo(x)a Vo(x)+9,V,(x)3'V*(x)

-9,V (x)3"V(x)] . (13)
Subtracting the contribution of the negative-energy states
one finds for the electronic part of the energy density cor-
responding to the expression (7), evaluated with the

—m2)20(E(x)*—m?) , Green’s function on the basis of the Lagrangian (8),
|
Ekin, reg( X) =lm, tr[(iy -V, —m)]Gg(x,y)]
y—x
_ 1 D 0 Ik kyl
—— T |2— 2 |[8,V4(x)3'VUx)—3, ¥, (x)3'VH(x)+3, V. (x)9*V(x)]
247? 2
1 D Ik 1 3 ”l2 2 . (x)
- —_ - + 2x
P 2 > Vi (x)3,F ™ (x)+ Py p(x)E(x) > p(x)E(x)+m“arcsinh m
3 2
+ [VE(x)]*|— E(X)3+E(X)—arcsinh 23X AR [ E2 4 px)
1272 2p(x)®  p(x) m p(x)
+—L poorkx) | EX) arcsinn [ 242 Ly (%9, | Fxarcsinh |2Z) || | (14)
247? p(x) m 6m? m
ot reg )= — 121772 2—% v, (x)3,F*(x)
2 2
+vVo%x) E——( AE(x) 2arcsinh p(x) +E(x) +[VE2(X)] _E(x)z
37 1272 m p(x) 247%p(x) p(x)
+— v, (08, | F(x)arcsinh | 21X (15)
6 m

Both energy densities are not gauge invariant (although the corresponding energies are). Addition of both contributions
and the counterterm of Eq. (13) leads to a finite and gauge-invariant total energy density. In order to define a renormal-
ized kinetic energy density one subtracts the renormalized potential-energy density of the system,
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Epot, & (X) =P (X)V(X) = jp (x)-V(x) (16)
from the total energy density and obtains after partial integration,
2
Exin & (X)= — lp(x)E<x)3—m— p(X)E(x)+marcsinh | 24X l ) ]
’ 4 2 m
3
+ A NvEp |- E8L L EX) o cginh |22 ARG [ BB )
127 2p(x)*  p(x) m (x)
+ 1 Fr(x)F*(x) —E—£X—)+arcsinh px) . (17)
2412 p(x) m

One recognizes immediately that this expression is gauge
invariant. In addition, the kinetic energy density as well
as the four-current reduce to the expressions given in

f

(the index [n] denotes the order of #) and the current
contains no contributions of zeroth order. Thus one can
replace p (x),

Ref. 6 for the case of a pure electrostatic potential.

The next step is the consistent inversion of the four- p(x)={3m[p(x)—pl*x)—
current functional up to second order. In order to con- 2,(2](x)
struct a manifestly gauge-invariant inversion one =[37%p(x)]"/ 3———123———%7+ e (18)
represents E and the spatial components of the field ten- [37°p(x)]
sor FX rather than V" as functionals of the four-current.
The technical aspects do not differ greatly from the pure Y
electrostatic case. The zeroth-order charge density only _ 5 3
depends on V%x)[p(x)], 9(x)=[37p(x)]"7, (19)

p(x)=pl%x)+pl2kx), plo%%x)= 23(_"_22_3_ ';in 311 terms which are of second order. In particular, one
T nds

]}1/3

2 2
pl(x)=mVp(x)]? ——13—2——1—5—-‘1———:.23—arcsinh 4
249°Q° 8¢ 6¢°Q m
1 1 ..l g 1 Ik
+[Ap(x) + ——arcsinh + Fu(x)F*"(x), (20a)
S ryri m 2am2q & 2
j4x)=—153, |arcsinh | L |Fikx) |, (20b)
6 m
where the abbreviation
Q(x)=(g(x)*+m?*)!7? 21
has been introduced . Equation (20b) is resolved by the nonlocal functional
3T 1
Flk(x)= FE [l-k kil ]
(x) 2arcsinh(q/m) f Y [x—yl 9 (y)=8,j1y) 22)
This representation, together with Eqgs. (18) and (20a), is the gauge-invariant version of the functional V[ j*].
It remains to insert Egs. (18), (20a), and (22) into the kinetic energy density, Eq. (17):
oy 1 3 3 4 . _q_ 1 2 .
skin,R[p,]]——gﬂ'2 qQ°+q°Q —m™*arcsinh - a2 Vq é— 1+2-g-arcsmh _r%
3 1 1 .
+ 3 3 . — |i(v)-
16 arcsinh(q /m) fd yfd Z | Vs Ix—yl 'V" |x—z| iy)ritz)
- : [a% [a*jz) |V, |ity) |V, —— 23)
16 arcsinh(q /m ) * [x—yl *lx—z] |°
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This is the (gauge-invariant) relativistic kinetic energy
density of noninteracting particles in an arbitrary static
four-potential. In contrast to the pure electrostatic case
this functional is nonlocal.

To obtain the full extension of the relativistic TFDW
model to systems in the presence of magnetic fields one
has to add the potential energy of the interacting system
to Eq. (23). Besides the potential energy due to the exter-
nal potential,

Ee( X)=V"(x)j,(x), (24)

one has to take into account the direct potential energy,

fd3 px)ply)—j(x)-jly)

, (25)
|x—y|

Egir(X)= 2

and the exchange energy. As the TFDW model contains
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the lowest-order effective propagator one finds directly

(see Ref. 6)

ey r(X)=—— {2m2q2+q2Q2—6m 2¢Q arcsinh |1
m

|

It is straightforward to include more elaborate represen-
tations of the exchange energy as, e.g., given in Refs. 1
and 2.

Equations (23)-(26) constitute the extension of the rel-
ativistic TFDW model to systems in magnetic fields,

+3m* (26)

arcsinh |1
m

E rrroWw= fd3x[€kin,R(X)+€ext(X)

the exchange energy only to lowest orders of # as well as +egi(x)t+e, p(x)] . (27)
a, the presence of a magnetic field does not show up in
€, (x) in this approximation. Replacing Gyr in Eq. (7) by The nonrelativistic limit of this functional is
J
. (37%)° | (Vp)? 3m 1 1 .
€ ,i]1= + d d3z V,T—— )-j(z)
eTFDW[p J] 1077_2m 72mp 6(37rp 1/3 f yf x | _yl x |X—Z| y))
fdyfd zj(z ! ity) Vx—l—'—
16(3# p)‘/3 Ve Tamyl -yl |x—z|
. (x)p(y)—j(x)-jly) a
Vo—V-j+2 [a¥yE — (37 . (28)
P 73 f 7 Ix—yl 473 P
Up to the contributions of the current it is identical with the well-known TFDW energy expression.
Introducing the interelectronic vector potential
= i(y)
wix)= [d3 _Jy)
S Ix—yl
and the total electrostatic potential
U(X)E exx 2 f
one can write the variational equations following from Egs. (5) and (6) with (27) as (in the units #i=c =m =1)
0=12qQ IQ +U+u—1 ] +6g—q[qQ —3arcsinh(g)]— Sm’ _(VXW) _ (Vg)! 1+ 4’ +4Larcsinh(q)
T 4 g arcsinh®(q) 2q Q2 ok
—(Aq) 1+2—éarcsinh(q) (29)
AU = —4map —iq—(f (30)
ext 377_ ’
AW=—47j , (3D
V-W=0, (32)
[d*x ¢*=32°N , (33)
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where N is the electron number. Equation (32), together
with Eq. (31), automatically guarantees V-j=0.

It should be pointed out that the approximation used
in the derivation of the functionals (27) and (28) is in-
dependent of the strength of the potential. It is an expan-
sion around the homogeneous limit which has been used.
Thus the model will be most adequate if the fields which
are present do not vary too strongly. The strength of the
potentials can be arbitrarily large. However, as the pure
TFDW model has proved to be reasonably satisfactory,
even for systems as inhomogeneous as atoms, one might

hope for equivalent accuracy and regime of realiability in
the extended case. A model calculation of atoms in mag-
netic fields is in progress.
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