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The energy of a metallic crystal is expressed as a sum of volume, surface, and curvature terms. The
fully self-consistent solution of a simplified problem shows that, in the absence of shell-structure effects,
this expression can be accurate even for atomic-scale properties. Thus the liquid-drop model, originally
developed for finite systems (nuclei), may actually be more appropriate for infinite ones (metals). First
applications are made to the face dependence of the surface energy and to monovacancy-formation and
cohesive energies. Predictions of the model may be tested by experiment or by fully self-consistent

Kohn-Sham calculations.

PACS numbers: 71.45.Nt, 61.70.Bv, 68.35.Md, 71.45.Jp

The total energy of an extended system of volume V
and surface area A is

E=aV+oA+;—yfdAR", (1)

where a, o, and y are intrinsic volume, surface, and cur-
vature energies (determined largely by the bulk density
and nature of the constituent species), and R ~1is the lo-
cal curvature of surface-area element d4. The leading
term of Eq. (1) may also be written al’ =&N, where N is
the number of constituent particles and ¢ is the energy
per particle in the limit ¥/ A4— oo. The physics of Eq.
(1) is explained in a recent monograph' on classical
fluids: In a system with >0 and y> 0, the energy
minimizes when each particle has an environment that is
as bulklike as possible, i.e., when the surface is as small
in area and as concave as it can be for a given volume.
This liquid-drop model (sometimes neglecting the curva-
ture energy) has long been useful in nuclear physics,?
despite errors arising from the shell structure of finite
systems. We propose to use Eq. (1) in solid-state phys-
ics, for the description of inhomogeneous neutral metals.

Some of the properties we shall discuss, such as the
formation energy of a monovacancy or the crystal-face
dependence of the metallic surface energy, arise in the
limit ¥/ A— oo, in which the one-electron levels tend to
a continuum and shell-structure effects disappear. These
effects are also absent for finite V/ A within a continuum
approximation such as the fourth-order density-gradient
expansion® for the kinetic energy or the local-density
representation for exchange and correlation,* which
together constitute the Thomas-Fermi-Dirac-Gombas-
Weizsicker-4 (TFDGW4) approximation. In fact, our
present study was motivated by the results of our recent
solution® of the TFDGW4 Euler equation for jellium
spheres (Table I), following the method of Ref. 6. We
now describe those results.

In the jellium model’ of a metallic cluster, the positive
charge on the ions is smeared into a background of uni-
form density 77 =3/4zr? inside a spherical Gibbs surface
of radius R =N”3rs, where N is the number of electrons
needed to neutralize the background. Taking the corre-
lation energy from Ref. 8, we find o and y from fits to
calculated total energies for spheres of large N (up to
106 in Ref. 5). To our knowledge, Ref. 5 is the first fully
self-consistent study of size dependence in the asymptotic
limit ¥V/A— o. A surprising result of this study is
displayed in Table I: Equation (1) predicts the energy
per electron E/N accurately (within 0.03 eV) even for
N =1, for which

E = g+ odnrl+ y2nr, 2)

is the negative of the energy needed to remove the elec-
tron and disperse the background (E = —I+3e?%/5r,,
where [ is the ionization energy). From Table I, we ten-
tatively conclude that the total energy of a neutral metal
(in the absence of shell structure) is accurately repre-
sented by Eq. (1), even for surfaces that vary on the
atomic scale.

In a first application of this elementary perspective, we

TABLE I. Within a continuum approximation for the densi-
ty functional E[n], the total energy E of a neutral one-electron
(N=1) jellium sphere is accurately represented by the asymp-
totic (N— o) form of Eq. (1) (from the TFDGW4 calcula-
tion of Ref. 5).

rs £ e+ odnr? e+ odnr? E
(bohrs) (eV) (eV) + y2mrs (eV)
2 0.065 —0.767 —0.206 —0.172
4 —2.103 —1.623 —1.445 —1.459
6 —1.933 —1.548 —1.478 —1.478
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shall calculate the crystal-face dependence of the metal-
lic surface energy. A “planar” crystal surface, formed
by cutting along the boundaries of the Wigner-Seitz unit
cells and smoothing the resultant sharp corners, is actu-
ally corrugated on the atomic scale.® Thus the micro-
scopic area 4 of Eq. (1) is greater than the macroscopic
or Gibbs-plane area 4 by a “corrugation factor” A/A
> 1. Moreover, the curvature term of Eq. (1) vanishes,
since every microscopic ‘“‘hill” is paired to a microscopic
“valley” with equal and opposite energy of curvature.
Thus, we propose that the face-dependent surface energy
is

O'face=0A/Z ) 3)

where o is the intrinsic or flat-surface energy.

Evaluation of the corrugation factor could be a tedious
geometric problem for each crystal structure and face.
But, for monatomic nearly-close-packed crystals (face-
centered cubic or fcc, body-centered cubic or bec, hexag-
onal close packed or hcp with near-ideal ¢/a = 1.633),
the Wigner-Seitz polyhedral unit cell may be replaced by
a Wigner-Seitz spherical cell of radius ro=z l/3r5, where
z is the valence. Let d be the distance between neighbor-
ing lattice planes parallel to the surface. Then each
Wigner-Seitz spherical cell in the first lattice plane is in-
tersected by the planar Gibbs surface, as shown in Fig. 1.
If no sphere from the second lattice plane is so intersect-
ed [i.e., if 3d/2>ry, as is the case for all faces con-
sidered here except bee (111)], then the corrugation fac-
tor is simply the ratio of the area 2nro(ro—d/2) of that
part of the spherical-cell surface lying outside the Gibbs
plane to the area z[ré — (d/2)?] of that part’s projection

PLANAR SURFACE

WIGNER-SEITZ

SPHERE

METAL VACUUM

FIG. 1. A Wigner-Seitz spherical cell in the first lattice
plane, intersected by the planar Gibbs surface of the metal.

TABLE II. Atomic corrugation factors 4/4 or Eq. (4) for
common crystal faces.

Crystal AlA
fec (111) 1.150
(100) 1.220
(110) 1.377
bee (110) 1.164
(100) 1.327
ain 1.547¢
hep (0001) 1.150

“Inclusion of the contribution from the second lattice plane
changes the bee (111) value to 1.451.

onto this plane:
A/A=2/(1+d/2ro) . (4)

This factor is presented in Table II for some common
crystal faces, using values of d/ro from Table IV of Ref.
10. Note that the number of atoms per unit area of
Gibbs surface in the first lattice plane is 3d/4xrg, so the
surface energy predicted by Egs. (3) and (4) is higher
for a less densely packed face, as expected.'!~!3

As shown in Table III, this conceptually simple,
nonempirical, geometric theory for the face dependence
of the metallic surface energy produces results that fall
within the range of those predicted by detailed micro-
scopic calculations or semiempirical models. Specifical-
ly, we compare our surface-energy anisotropies with
those predicted by the second-order pseudopotential per-
turbation theory of Rose and Dobson,'! the variational
Kohn-Sham density-matrix calculation of Bohnen and
Ying,'? and the equivalent-crystal model of Smith and
Banerjea.!3 Fully self-consistent Kohn-Sham* calcula-
tions, or experiments, are needed to determine which

TABLE III. Theoretical surface-energy anisotropies. RD:
Rose and Dobson (Ref. 11). SB: Smith and Banerjea (Ref.
13). BY: Bohnen and Ying (Ref. 12). LDM: liquid-drop
model [Egs. (3) and (4)]. (RD and BY are partially self-
consistent Kohn-Sham pseudopotential calculations; SB is a
semiempirical model for the anisotropy.)

RD SB LDM

fcc metals:
Al c100/0111 1.09 1.39 1.06
ono/on 1.6 1.42 1.20
Cu o100/o111 s 1.30 1.06
ono/on 1.24 1.20
RD BY LDM

bce metals:
Na o100/0110 1.14 1.18 1.14
K a100/0110 1.14 1.18 1.14
Rb G100/G110 1.14 1.23 1.14
Cs c100/0110 1.33 1.22 1.14
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theory works best. (In the case of Cu, the self-consistent
calculations listed in Ref. 13 yield ooo/c1;1 =1.095, in
reasonable agreement with the result of our liquid-drop
model, but no firm conclusion can be drawn since the
two self-consistent calculations were done differently.)

Experiment'*!® suggests that surface energies vary by
no more than 10%-20% among various faces of the cubic
metals. The predictions of the liquid-drop model (Tables
IT and III) stand in reasonable agreement with this ob-
servation, while the surface energies calculated for bcc
Fe and W by the equivalent-crystal model (Table I of
Ref. 13) display variations closer to 100%.

We turn now to the curvature energy y. The shell-
structure effects present in finite metallic clusters make
it difficult to extract accurate values of y either from
Kohn-Sham orbital calculations'® or from experiment.
But shell effects are absent for a vacancy in an infinite
metal, which we propose as an ideal system for extrac-
tion of y. In particular, the monovacancy-formation en-
ergy'"™!" g, is the energy required to move an atom
from the interior of the metal to the surface, leaving
behind a “hole” of radius ro and negative curvature
—1/ro. Motivated again by Table I, we apply Eq. (1) to
find

Evac == cdrird — y2mro. (5)

From Eq. (5), plus measured vacancy-formation energies
and surface energies, we determine the curvature ener-
gies y for real metals presented in Table IV. The intrin-

sic or flat-surface energy o is constructed from the mea-
sured liquid-metal surface tension, extrapolated to zero
temperature?’ and divided by an atomic corrugation fac-
tor of 1.2. [The liquid-metal surface energy is probably
close'! to that of a low-energy crystal face like fcc (111)
or bec (110).] The curvature energies y found for real
metals in Table I'V have the same sign and order of mag-
nitude as those which have been computed for jelli-
um. 516

The cohesive energy?' is the energy per atom needed
to separate the metal into neutral atoms. Neglecting
shell-structure effects, this is just the energy needed to
create the curved surface of the free atom, which Eq. (1)
predicts to be

Ecoh = odnrd + y2mry . (6)

A cruder approximation, which retains just the first term
on the right-hand side of Eq. (6), is well known.20:22:23
Table 1V shows that Eq. (6) gives an accurate account of
the cohesive energies of the monovalent metals, using
values of o and y already determined from the preceding
paragraph. [It follows from Egs. (5) and (6) that g,
+ £.0n == 087rd for the monovalents.] However, Eq. (6)
is less satisfactory for divalent and polyvalent metals, for
which shell effects in the free atom cannot be neglected,
and its success for the monovalents is unexplained.

In summary, we have presented a liquid-drop model
for a neutral inhomogeneous metal. There are three in-
trinsic parameters (g, o, and y), which may be measured

TABLE IV. The intrinsic surface energy o and curvature energy y of a monovalent (z=1)
metal determine the monovacancy-formation energy &.c and cohesive energy &on, via Egs. (5)
and (6). Here ro, 0, &, and &con are experimental values; y is constructed from Eq. (5). (The
extra stability of the divalent atoms due to subshell closure makes their cohesive energies small-
er than the predictions of the liquid-drop model.)

ro Evac cdnré ¢ Y odnré Ecoh ©

z Metal (bohrs) (eV) (eV) (eV/bohr) + y2nro (V)
1 Cu 2.67 1.28% 2.34 0.063 3.40 3.49
Ag 3.02 1.11% 2.08 0.051 3.05 2.95

Au 3.01 0.89* 2.50 0.085 4.11 3.81

Li 3.25 0.34° 1.01 0.0328 1.68 1.63

Na 3.93 0.42° 0.74 0.0130 1.06 1.11

K 4.86 0.39° 0.63 0.0079 0.87 0.93

Rb 5.20 0.27¢ 0.58 0.0095 0.89 0.85

Cs 5.62 0.28° 0.55 0.0076 0.82 0.80

2 Mg 3.35 0.9* 1.61 0.034 2.32 1.51
Zn 2.90 0.54% 1.53 0.054 2.52 1.35

Cd 3.26 0.52% 1.48 0.047 2.44 1.16

3 Al 2.99 0.66% 1.86 0.064 3.06 3.39
In 3.48 0.55% 1.55 0.046 2.55 2.52

Tl 3.58 0.46% 1.41 0.042 2.36 1.88

4 Sn 3.52 0.54% 1.61 0.048 2.68 3.14
Pb 3.65 0.5¢ 1.45 0.041 2.40 2.03

“Reference 18.
bReference 17.
‘Reference 19.
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dReference 20.
‘Reference 21.
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or calculated from first principles. (Intrinsic surface en-
ergies o are calculated in Ref. 24, without appeal to a
corrugation factor.) This model provides a simple and
seemingly accurate account of face-dependent surface
energies, monovacancy-formation energies, and (for
monovalents) cohesive energies. Applications to other
atomic-scale inhomogeneities might also prove interest-
ing. [Note that the model cannot explain the different
reconstruction properties of (110) surfaces of Cu, Ag,
and Au.]

Based upon the results of Table I, our confidence in
the liquid-drop model is highest for simple metals of
infinite volume, and declines as we pass to noble metals,
transition metals, and finite systems (e.g., single atoms).
Thus we believe that the model can predict the energies
and equilibrium shapes of voids more reliably than those
of metallic clusters, where shell-structure effects may be
important. Further tests are needed, beyond those pre-
sented here.

Because of the uncertainties of measured surface and
vacancy-formation energies, the most precise tests are
likely to be comparisons with the results of fully self-
consistent Kohn-Sham* calculations: (1) Surface ener-
gies could be calculated accurately for different faces of
various close-packed metals, and their ratios compared
with the predictions of Egs. (3) and (4). (2) The surface
and curvature energies of jellium (or stabilized pseudo-
jellium?*) could be found from the calculated energies of
large spherical voids, and used to test Eq. (5) against
computed monovacancy-formation energies. (Analysis
of Fig. 5 of Ref. 25 suggests that the liquid-drop model
might pass this test for jellium, with y=0.037 eV/bohr
at r,=2.07 bohrs and y==0.012 eV/bohr at r,=3.93
bohrs.)
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