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Based on the density functional approach to quantum hadrodynamics a local effective exchange
potential for use in nuclear structure calculations beyond the mean-field approximation has been
developed. For a conceptual study of the density functional technique the resulting Kohn-Sham
single-particle equations have been solved for several spherical nuclei within the linear o-w model.
A detailed comparison with Hartree-Fock results is given.
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I. INTRODUCTION

Relativistic mean-field theory, introduced by Miller
and Green [1] and Walecka [2], has been applied with
considerable success to a variety of problems in nuclear
structure physics. In particular, ground state properties
of nuclei have been extensively studied in terms of dif-
ferent variants of the mean-field approximation, for ex-
ample, by Horowitz and Serot [3] (for an overview see
[4,5)).

In recent years there has been growing interest in
many-body approaches beyond the mean-field limit. As
the corresponding calculations can be quite involved,
only a limited number of studies of nuclear properties for
finite systems have been performed to date in terms of the
Hartree-Fock (HF) approximation [6-9]. The computa-
tional demands, in particular for heavy nuclei, originating
from the nonlocal character of the HF exchange poten-
tial complicate systematic investigations, involving, e.g.,
least-squares fits of the model parameters to empirical
ground state data [8]. Only few efforts have been made
to address the question of correlation effects for the case
of finite nuclei [9-13]. The situation is more auspicious
for the nuclear matter problem. Correlation effects have
been studied extensively in the framework of the rela-
tivistic generalization of the Brueckner-Bethe approach
[14-16]. The resulting Dirac-Brueckner (DB) method
[17,18] may now be considered as state of the art for
nuclear matter calculations. Due to the complicated non-
local structure of the DB equations fully self-consistent
calculations for finite systems do not (yet) seem possi-
ble [9]. For this reason effective approaches, parametriz-
ing the correlation contributions in the form of a den-
sity dependent coupling constant, like density depen-
dent mean-field and effective Dirac-Brueckner-Hartree-
Fock schemes, have been developed [13,9].

This situation is somewhat similar to the difficulties
one has to face in the ab initio description of Coulomb
systems [19]. In this field, however, density functional
(DF) methods have attracted considerable interest in re-
cent years [20,19]. The high efficiency of DF calculations
mainly originates from the local character of the density
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dependent exchange-correlation (xc) potential, the key
ingredient of the basic, single-particle-type equations of
DF theory (DFT) [21,22]. The success of DF methods
in quantum chemical and condensed matter applications
motivates their extension to relativistic nuclear physics.
The foundations of a DFT approach to quantum hadro-
dynamics (QHD) have been given in Ref. [23] (to which
we refer the reader for details) by generalizing the fun-
damental DF existence theorem to QHD and deriving
the Kohn-Sham (KS) equations, which, in spite of their
single-particle character, in principle contain all exchange
and correlation effects.

The present contribution constitutes a more concep-
tual study of the KS approach to relativistic nuclear
physics. In order to establish the basic elements of this
technique and to analyze its properties we restrict our-
selves to the exchange-only limit in the local density
approximation (LDA) and to the simplest effective La-
grangian suggested in this context, i.e., the linear o-w
model (QHD-I) [2]. Thus HF results [7,9] on the ba-
sis of QHD-I serve as a standard for comparisons. The
exchange-only limit of the LDA potential is evaluated
analytically and applied to finite nuclei. The question of
correlation contributions (within the LDA) is indicated
briefly as a unified approach to exchange and correlation
effects would be the next logical step.

II. THE KOHN-SHAM APPROACH

A detailed discussion of the DFT approach to QHD-I
and the derivation of the corresponding KS equations for
the symmetric case has been given in [23]. A generaliza-
tion to asymmetric systems (including Coulomb forces)
is straightforward and will thus only be briefly summa-
rized in the following. The DFT scheme is based on the
fact that not only the properties of infinite nuclear mat-
ter (INM) but quite generally the ground state |®¢) of
any QHD system is uniquely determined by the proton
and neutron ground state four-currents jj and j. and
the ground state scalar density p,, allowing one to un-
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derstand the ground state energy E, as a functional of
these quantities:

EO[P&:]pv]#] = (QO[PanpaJ ] I H l QO[pBaJp ,Jn]>

Expressing the currents j (where g characterizes either
protons, ¢ = p, or neutrons, ¢ = n) and p, in terms of
auxiliary single-particle four-spinors ¢; g,

ps(x) = Z Z Pi,g(X)piq(x) |, (1)
q=n,p | —M<e€; q<e€Fr,q

BE) = D Pig()7*eie(x) (2)
—~M<ei q<€F,q

(within the no-sea approximation, i.e., neglecting all vac-
uum corrections) one can decompose Ej as

Ey =T, + Eg + Exc, (3)

where T, represents the kinetic energy functional of non-
interacting nucleons,
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and the exchange-correlation energy E,. is defined via
Eq. (3). Minimization of Eq with respect to the ; 4 then
leads to the single-particle equations (KS equations)

{——za V+5[M O — Pxc +Vu(V, H‘*'ch]}‘Pi,q

= €iqpiq, (6)
where ¢p(x) and V*,(x) are the usual Hartree poten-
tials (V,'y includes the Coulomb contribution) and the
local exchange-correlation potentials ¢yc(x) and VX, (x)
are given by

Vi,axe(x) = [Ps) j,’,‘,jﬁ], (7

)
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87q (x)
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Equations (1), (2), and (6)—(8) have to be solved self-
consistently. We just remark that the standard mean-
field approach is obtained from this scheme by simply
neglecting ¢x.(x) and V}, (x). Knowledge of the exact
Exclps, ik, k] would in principle allow one to evaluate
the exact ground state four-currents and scalar density
as well as the exact ground state energy by solution of
the KS equations (within the no-sea approximation or
beyond). Reasonable approximations to Exc[p,,j¥, %],
on the other hand, are expected to give reasonable cur-

é
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rents, densities, and energies, as is the case for electronic
systems [20,24].

III. EXCHANGE-CORRELATION ENERGY
FUNCTIONAL

An exact representation of Ey.[ps,j},j4] can be ob-
tained using the coupling constant integration method
[23]. Unfortunately, the complexity of this representation
does not allow its direct application. In order to obtain
E,. as an explicit density functional the standard approx-
imation applied in the case of electronic systems [20,21] is
the so-called local density approximation (LDA). In the
present context the LDA amounts to utilizing the density
dependence of the exchange-correlation energy density of
nuclear matter, elNM, for the inhomogeneous system of
interest, e.g., a nucleus, by locally replacing the nuclear
matter densities by the actual densities pg(x) = jg o(x)
and p,(x),

E:Ic‘zPA[Pu Pp» Pn] = /d3"' e:I(IEM(Pa’ Pps Pn) (9)

(the spatial components of the currents do not contribute
in the LDA). However, usually elNM is given as a function
of the local effective mass M* (x) M — ¢p(x) — Pxc(x)
rather than p,, € INM(M*, PpsPrn). The connection be-
tween M* and p, is established by the standard mean-
field relation

_ (M*)3
Ps = Dy

Z [Bang — In(Bq + mg)], (10)

q=p,n

where

By = (3n%pq)3 /M*, 1q = [1+ B3] (11)
For nuclear matter, i.e., for homogeneous nonvanishing
densities, M* and p, are completely equivalent as the
uniqueness of (10) allows the elimination of M* from
EINM(M*, pp, pr) in favor of p,. For inhomogeneous sys-
tems, however, the actual scalar density p,(x), Eq. (1),
is not identical with the p, obtained from M* via (10),
although the differences are small in general One can
thus use a perturbative approach to elNM(p,, pp, pn) (for
fixed p, and p,),

INM(ps) ~ eINM(M*)
SINM ~ -1
+ G ) (= 01)) (o= )

(12)

in which the difference between p, and g, has been taken
into account to first order, wherever inversion of (10)
leads to numerical difficulties as, e.g., in the asymptotic
regime with its vanishing nuclear densities. In view of
its close relationship to nuclear matter and its computa-
tional efficiency the LDA is an ideal starting point for ap-
plications of the KS approach to QHD and thus explicit
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expressions for elNM[M*, p,, p,] will be summarized in eINM _ Z [eNM(B,, M*) + e (Bqs M*)]
the following. xc a=pm
The exchange-correlation energy of homogeneous nu-
clear matter has been studied by Chin [25]. The total +eNM(3, B, M*) . (13)
,I(IEM separates into a scalar exchange component eETIGM,
a vector exchange term eINM and a correlation contribu-  Within the ring approximation (RPA) eI™M s given by
tion eINM, (the notation follows Ref. [25])
]
; 4
¢INM/RPA _ _% —(%gz{ln(l —- D'I2) + D'I? + 2[In(1 — D'TIR) + D'TIR)
117D D 3,
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which has been evaluated numerically by Ji [26]. For the exchange energy densities one obtains
M * 1 w
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[note that knowledge of I(w,&;,&;) for & # & is re-
quired for extensions of QHD-I]. The integral (17) has
been calculated numerically by Chin [25] as well as Furn-
stahl and Serot [27]. However, I(w,&;,£2) can also be
evaluated analytically (the explicit result is given in the
Appendix) which is particularly useful for application of
(17) in self-consistent calculations.

Figure 1 shows the 3 dependence of eH:IM for different
values of w, i.e., M*. To facilitate comparison with the
well-known case of quantumelectrodynamics (see, for ex-
ample, [28]) el"M has been normalized with respect to

—g2(M*pB )4/(21r)4, i.e., its nonrelativistic and zero-mass

1.0

(Bw)/(&.2(M B/(2m))")

INM
'ex,w

FIG. 1. Vector exchange energy density, Eq. (16), as a func-
tion of B, Eq. (11), for various values of w [normalized with
respect to —g2 (M*B)*/(27)%].

[

limit. Figure 2 gives the corresponding behavior of eINM
[normalized with respect to g2(M*3)*/(27)4]. Flgures 1
and 2 clearly demonstrate the qualitative difference be-
tween massless and massive meson exchange: The short-
range interaction of massive mesons leads to a much more
pronounced reduction of the exchange energy density for
vanishing 8. For finite nuclei, however, the relevant w
regimes are roughly given by 0.7 < w, and 0.2 < w,
in which only a weak w dependence of eINM and eINM
is found. While in the relevant 3 regime (0 <pB< 1)
the magnitude of the repulsive eINM increases with (3,
its attractive vector counterpart shows a clear maximum

FIG. 2. Scalar exchange energy density, Eq. (15), as a func-
tion of B, Eq. (11), for various values of w [normalized with
respect to g2(M*3)*/(2m)*].
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beyond which elNM starts to approach its repulsive high-
,w

density limit (compare [25]).

IV. RESULTS FOR FINITE NUCLEI

In this first study of the KS approach to QHD we
have restricted ourselves to the exchange-only limit [us-
ing the LDA, Egs. (9), (15), and (16)], thereby obtaining
a density functional equivalent of the HF approximation.
While neglecting all correlation effects gives up the par-
ticular strength of the unified DFT approach to exchange
and correlation, it nevertheless seems appropriate for a
conceptual analysis of the local effective exchange po-
tential resulting from the LDA. Moreover, in order to
illustrate the essential features of this local potential the
simplest model, i.e., QHD-I, is completely sufficient. Un-
fortunately, only a limited number of HF results on the
basis of QHD-I are available in the literature [7,9], uti-
lizing one particular parameter set (listed in Table I). In
order to allow a comparison with these HF data, this pa-
rameter set has also been used in our KS calculations (as
usual for finite nuclei the Coulomb interaction has been
included).

Furthermore, it seems worth pointing out that the
functionals (15) and (16) include meson retardation ef-
fects (on the level of the LDA), in contrast to the relevant
HF calculations [7,9]. The importance of retardation cor-
rections, however, has been examined by HF calculations
for nuclear matter [29] as well as finite nuclei [30] within
the framework of both QHD-I (without giving explicit
results) and QHD-II. It has been concluded that due to
the high meson masses involved these contributions are
rather small for the case of QHD-I (for the binding energy
the retardation correction amounts to less then 0.5%).
Consequently a comparison of our “retarded” KS results
with the “nonretarded” HF values of Refs. [7,9] seems
justified.

The KS equations (6) have been solved by a basis ex-
pansion in terms of spherical harmonic oscillator func-
tions. The same expansion technique has been used for
the meson field equations determining &5 and V3. De-
tails of the numerical procedure can be found in [31]. All
the results given in the following are based on an oscilla-
tor parameter of Awg = 41471/3 and 20 shells (Ng = 20).
The numerical stability of our calculations has been ver-
ified by performing the convergence tests of Ref. [31].

Our results for spherical nuclei are summarized in Ta-
ble II. Both nuclear radii and binding energies show an
excellent overall agreement with the HF results. The
largest discrepancy between HF and the LDA is found for
light nuclei like 6O, while the difference decreases with
increasing nuclear size. This is exactly the behavior one

TABLE I. QHD parameters from Ref. 7] used for all HF
and KS calculations.
me = 440 MeV
m, = 783 MeV
M = 938.9 MeV

g2 = 69.62
g2 =153.81

TABLE II. Binding energy (in MeV) and various rms radii
(in fm) from HF and KS calculations for several spherical
nuclei [34] (without center of mass correction).

—E/A R. R, R

P
HF LDA HF LDA HF LDA HF LDA
180> 2.33 243 293 291 2.75 2.80
40Ca® 4.32 4.37 3.59 3.59 3.42 3.50
48Ca® 5.04 4.95 3.56 3.57 3.66 3.48
907y 5.56 4.35 4.34 4.27

tl4gnb 554 5.56 4.63 4.65 4.68 4.68 4.56 4.58
464> 5.52 5.53 5.02 5.03 5.03 5.03 4.96 4.96
208py, 5.65 5.52 5.69 5.46

*HF results from Refs. [7,9].
PHF results from Ref. [35].

would expect for an approximation based on nuclear mat-
ter like the LDA as surface effects become less important
with increasing nuclear size as compared to bulk proper-
ties. It should be emphasized, however, that the small
absolute difference of 0.1 MeV for 180 clearly demon-
strates the high accuracy of the LDA even for rather
light nuclei. Moreover, the fact that nuclear radii from
the LDA are more or less identical to their HF coun-
terparts throughout the periodic table indicates that the
LDA densities are very close to HF densities even in the
surface regime. This is directly illustrated in Fig. 3 where
the proton density of 1*Sn obtained by a LDA calcula-
tion is compared with the corresponding HF result [32],
thus proving that the accuracy of the LDA for energies
and radii is not based on a fortuitous cancellation of local
errors.

For completeness we also give the KS single-particle
spectrum of *°Ca and “®Ca in Table III. From a rig-
orous point of view, however, these KS eigenvalues do
not have any physical significance (apart from the high-
est occupied level [21]) due to the auxiliary nature of the
KS orbitals. Nevertheless, in the context of condensed
matter problems the KS single-particle energies are often
successfully used to identify band structures, indicating
their usefulness from a pragmatic point of view. How-
ever, although the level schemes which we obtained for

— HF
s LDA

10

4 6
r (fm)

FIG. 3. Proton point densities for '**Sn from HF [32] and
LDA calculations (for the parameter set given in Table I).
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TABLE III. Kohn-Sham single-particle energies (—e€iq in
MeV) for *°Ca and **Ca.

Level 40Ca 48Ca

Neutron Proton Neutron Proton
131/2 53.23 44.76 57.00 50.09
1p3/2 36.01 28.04 40.36 34.38
1pl/2 30.25 22.29 35.81 29.70
1d5/2 20.16 12.70 24.23 19.01
231/2 14.02 6.84 16.82 11.37
1d3/2 11.96 4.71 16.16 10.92
1£7/2 9.54

small and medium size nuclei (compare Table III) match
the experimental data, a quantitative comparison of our
eigenvalues with experimental single-particle energies is
not appropriate at the present level of our calculations,
as they are based on the linear o-w model.

V. SUMMARY AND OUTLOOK

Within the Kohn-Sham approach to density functional
theory a local effective exchange potential has been de-
rived. Its density dependence is based on the exchange
energy of nuclear matter which here has been evaluated
analytically in order to allow for efficient applications.
As an illustration of the Kohn-Sham approach and a first
study of its properties the resulting exchange-only Kohn-
Sham equations have been applied to spherical nuclei (in
the framework of the o-w model). A comparison with
HF results demonstrates that this approach is able to

w—2
I(w,£1,£2) = 2
1 1
+F (§1,862) - F (51, —) ~-F (—,Ez) +F (
& &
where
F(zy,22) = ud (ll' + B) arctan (W)
4 Ty T s
;o 0w
+%3L12 (1'1932——112)—5)
- 2wt
_éSle (1:12:2—1.”2___2)

(In&1Iné; — BimInés — BoenzInéy) — B1P2 + %[w(ﬂf + 71%) —2(m — 772)2] In

accurately reproduce all features of the much more in-
volved HF calculations, making density functional theory
a very attractive alternative to other many-body tech-
niques (even on the HF level).

For real applications the present approach has to be
extended to more realistic nuclear models like QHD-II.
On the other hand, the inclusion of correlation effects
should reveal the real power of the KS approach illus-
trated here: Applications of the correlated Dirac-Fock-
Brueckner method to finite nuclei seem to be restricted
by the complex nonlocal potentials involved. Substantial
simplifications will result from the use of local DF poten-
tials, making the investigation of correlations effects in
finite nuclei more amenable. In this respect the LDA for
the ring contributions discussed in Sec. III might serve as
a starting point. Moreover, on the level of the LDA the
investigation of Dirac-Brueckner-type correlations should
also be possible.
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APPENDIX: ANALYTICAL RESULT
FOR THE EXCHANGE DIAGRAM

In this appendix we give the analytic result for the
integral (17),

(é162 —1)2 + w€r&
(&1 — €2)% + w2

(A1)

1 l)
&1,62 ’

f

Here s = \/w(4 — w) and Li, represents Euler’s diloga-
rithm. The analytical formula (A1) has been verified by
comparison with a numerical evaluation of (17).

For numerical applications it is advantageous to use
a manifestly real representation of (Al). As the imagi-
nary contributions arising from the terms with the dilog-
arithms cancel each other, (A1) can be rewritten in terms
of Clausen’s integral [33], which can be evaluated more
efficiently.
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